Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085677930> ?p ?o ?g. }
- W2085677930 endingPage "188" @default.
- W2085677930 startingPage "153" @default.
- W2085677930 abstract "In this paper we derive an a posteriori error estimate for the numerical approximation of the solution of a system modeling the flow of two incompressible and immiscible fluids in a porous medium. We take into account the capillary pressure, which leads to a coupled system of two equations: parabolic and elliptic. The parabolic equation may become degenerate, i.e., the nonlinear diffusion coefficient may vanish over regions that are not known a priori. We first show that, under appropriate assumptions, the energy-type norm differences between the exact and the approximate nonwetting phase saturations, the global pressures, and the Kirchhoff transforms of the nonwetting phase saturations can be bounded by the dual norm of the residuals. We then bound the dual norm of the residuals by fully computable a posteriori estimators. Our analysis covers a large class of conforming, vertex-centered finite volume-type discretizations with fully implicit time stepping. As an example, we focus here on two approaches: a âmathematicalâ scheme derived from the weak formulation, and a phase-by-phase upstream weighting âengineeringâ scheme. Finally, we show how the different error components, namely the space discretization error, the time discretization error, the linearization error, the algebraic solver error, and the quadrature error can be distinguished and used for making the calculations efficient." @default.
- W2085677930 created "2016-06-24" @default.
- W2085677930 creator A5020083948 @default.
- W2085677930 creator A5025679502 @default.
- W2085677930 creator A5035995124 @default.
- W2085677930 date "2013-06-28" @default.
- W2085677930 modified "2023-10-17" @default.
- W2085677930 title "An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow" @default.
- W2085677930 cites W1492746283 @default.
- W2085677930 cites W1497158496 @default.
- W2085677930 cites W1516132534 @default.
- W2085677930 cites W1549748890 @default.
- W2085677930 cites W1576627634 @default.
- W2085677930 cites W1591043804 @default.
- W2085677930 cites W187876543 @default.
- W2085677930 cites W191691800 @default.
- W2085677930 cites W1967011851 @default.
- W2085677930 cites W1970850839 @default.
- W2085677930 cites W1970922081 @default.
- W2085677930 cites W1972684149 @default.
- W2085677930 cites W1985988195 @default.
- W2085677930 cites W1995404822 @default.
- W2085677930 cites W1999169366 @default.
- W2085677930 cites W2002156015 @default.
- W2085677930 cites W2006443697 @default.
- W2085677930 cites W2007289139 @default.
- W2085677930 cites W2008683313 @default.
- W2085677930 cites W202036229 @default.
- W2085677930 cites W2020982326 @default.
- W2085677930 cites W2022936648 @default.
- W2085677930 cites W2023111075 @default.
- W2085677930 cites W2037741679 @default.
- W2085677930 cites W2038393809 @default.
- W2085677930 cites W2038626747 @default.
- W2085677930 cites W2042275640 @default.
- W2085677930 cites W2051269517 @default.
- W2085677930 cites W2052711668 @default.
- W2085677930 cites W2053987804 @default.
- W2085677930 cites W2060866894 @default.
- W2085677930 cites W2067951086 @default.
- W2085677930 cites W2068432368 @default.
- W2085677930 cites W2070621570 @default.
- W2085677930 cites W2070623505 @default.
- W2085677930 cites W2071036364 @default.
- W2085677930 cites W2072983694 @default.
- W2085677930 cites W2074110915 @default.
- W2085677930 cites W2074350855 @default.
- W2085677930 cites W2077106134 @default.
- W2085677930 cites W2081954723 @default.
- W2085677930 cites W2083027300 @default.
- W2085677930 cites W2086007659 @default.
- W2085677930 cites W2093045844 @default.
- W2085677930 cites W2119851723 @default.
- W2085677930 cites W2139065360 @default.
- W2085677930 cites W2150347258 @default.
- W2085677930 cites W2154953812 @default.
- W2085677930 cites W2184401065 @default.
- W2085677930 cites W2310444497 @default.
- W2085677930 cites W2505585705 @default.
- W2085677930 cites W2562668947 @default.
- W2085677930 cites W272943700 @default.
- W2085677930 cites W3149667697 @default.
- W2085677930 cites W320619095 @default.
- W2085677930 cites W408406386 @default.
- W2085677930 cites W46603733 @default.
- W2085677930 doi "https://doi.org/10.1090/s0025-5718-2013-02723-8" @default.
- W2085677930 hasPublicationYear "2013" @default.
- W2085677930 type Work @default.
- W2085677930 sameAs 2085677930 @default.
- W2085677930 citedByCount "36" @default.
- W2085677930 countsByYear W20856779302013 @default.
- W2085677930 countsByYear W20856779302014 @default.
- W2085677930 countsByYear W20856779302015 @default.
- W2085677930 countsByYear W20856779302016 @default.
- W2085677930 countsByYear W20856779302017 @default.
- W2085677930 countsByYear W20856779302018 @default.
- W2085677930 countsByYear W20856779302019 @default.
- W2085677930 countsByYear W20856779302020 @default.
- W2085677930 countsByYear W20856779302021 @default.
- W2085677930 crossrefType "journal-article" @default.
- W2085677930 hasAuthorship W2085677930A5020083948 @default.
- W2085677930 hasAuthorship W2085677930A5025679502 @default.
- W2085677930 hasAuthorship W2085677930A5035995124 @default.
- W2085677930 hasBestOaLocation W20856779302 @default.
- W2085677930 hasConcept C105795698 @default.
- W2085677930 hasConcept C11210021 @default.
- W2085677930 hasConcept C121332964 @default.
- W2085677930 hasConcept C134306372 @default.
- W2085677930 hasConcept C135628077 @default.
- W2085677930 hasConcept C158622935 @default.
- W2085677930 hasConcept C17744445 @default.
- W2085677930 hasConcept C185429906 @default.
- W2085677930 hasConcept C191795146 @default.
- W2085677930 hasConcept C199539241 @default.
- W2085677930 hasConcept C2524010 @default.
- W2085677930 hasConcept C28826006 @default.
- W2085677930 hasConcept C33923547 @default.
- W2085677930 hasConcept C34388435 @default.