Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085688911> ?p ?o ?g. }
- W2085688911 abstract "Breast cancer detection using mammography has improved clinical outcomes for many women, because mammography can detect very small (5 mm) tumors early in the course of the disease. However, mammography fails to detect 10 - 25% of tumors, and the results do not distinguish benign and malignant tumors. Reducing the false positive rate, even by a modest 10%, while improving the sensitivity, will lead to improved screening, and is a desirable and attainable goal. The emerging application of magnetic relaxometry, in particular using superconducting quantum interference device (SQUID) sensors, is fast and potentially more specific than mammography because it is designed to detect tumor-targeted iron oxide magnetic nanoparticles. Furthermore, magnetic relaxometry is theoretically more specific than MRI detection, because only target-bound nanoparticles are detected. Our group is developing antibody-conjugated magnetic nanoparticles targeted to breast cancer cells that can be detected using magnetic relaxometry.To accomplish this, we identified a series of breast cancer cell lines expressing varying levels of the plasma membrane-expressed human epidermal growth factor-like receptor 2 (Her2) by flow cytometry. Anti-Her2 antibody was then conjugated to superparamagnetic iron oxide nanoparticles using the carbodiimide method. Labeled nanoparticles were incubated with breast cancer cell lines and visualized by confocal microscopy, Prussian blue histochemistry, and magnetic relaxometry.We demonstrated a time- and antigen concentration-dependent increase in the number of antibody-conjugated nanoparticles bound to cells. Next, anti Her2-conjugated nanoparticles injected into highly Her2-expressing tumor xenograft explants yielded a significantly higher SQUID relaxometry signal relative to unconjugated nanoparticles. Finally, labeled cells introduced into breast phantoms were measured by magnetic relaxometry, and as few as 1 million labeled cells were detected at a distance of 4.5 cm using our early prototype system.These results suggest that the antibody-conjugated magnetic nanoparticles are promising reagents to apply to in vivo breast tumor cell detection, and that SQUID-detected magnetic relaxometry is a viable, rapid, and highly sensitive method for in vitro nanoparticle development and eventual in vivo tumor detection." @default.
- W2085688911 created "2016-06-24" @default.
- W2085688911 creator A5002041492 @default.
- W2085688911 creator A5003420811 @default.
- W2085688911 creator A5006935839 @default.
- W2085688911 creator A5015979276 @default.
- W2085688911 creator A5020441837 @default.
- W2085688911 creator A5032110988 @default.
- W2085688911 creator A5032888272 @default.
- W2085688911 creator A5033074805 @default.
- W2085688911 creator A5035081315 @default.
- W2085688911 creator A5065519136 @default.
- W2085688911 creator A5067810936 @default.
- W2085688911 creator A5075766799 @default.
- W2085688911 creator A5077441080 @default.
- W2085688911 date "2011-10-01" @default.
- W2085688911 modified "2023-10-12" @default.
- W2085688911 title "Detection of breast cancer cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors" @default.
- W2085688911 cites W1963663469 @default.
- W2085688911 cites W1975882878 @default.
- W2085688911 cites W1983989686 @default.
- W2085688911 cites W1985866388 @default.
- W2085688911 cites W2002962641 @default.
- W2085688911 cites W2005446948 @default.
- W2085688911 cites W2024403903 @default.
- W2085688911 cites W2027815521 @default.
- W2085688911 cites W2037298513 @default.
- W2085688911 cites W2041465718 @default.
- W2085688911 cites W2062713892 @default.
- W2085688911 cites W2084333685 @default.
- W2085688911 cites W2095156669 @default.
- W2085688911 cites W2098361586 @default.
- W2085688911 cites W2107271788 @default.
- W2085688911 doi "https://doi.org/10.1186/bcr3050" @default.
- W2085688911 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3262221" @default.
- W2085688911 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22035507" @default.
- W2085688911 hasPublicationYear "2011" @default.
- W2085688911 type Work @default.
- W2085688911 sameAs 2085688911 @default.
- W2085688911 citedByCount "113" @default.
- W2085688911 countsByYear W20856889112012 @default.
- W2085688911 countsByYear W20856889112013 @default.
- W2085688911 countsByYear W20856889112014 @default.
- W2085688911 countsByYear W20856889112015 @default.
- W2085688911 countsByYear W20856889112016 @default.
- W2085688911 countsByYear W20856889112017 @default.
- W2085688911 countsByYear W20856889112018 @default.
- W2085688911 countsByYear W20856889112019 @default.
- W2085688911 countsByYear W20856889112020 @default.
- W2085688911 countsByYear W20856889112021 @default.
- W2085688911 countsByYear W20856889112022 @default.
- W2085688911 countsByYear W20856889112023 @default.
- W2085688911 crossrefType "journal-article" @default.
- W2085688911 hasAuthorship W2085688911A5002041492 @default.
- W2085688911 hasAuthorship W2085688911A5003420811 @default.
- W2085688911 hasAuthorship W2085688911A5006935839 @default.
- W2085688911 hasAuthorship W2085688911A5015979276 @default.
- W2085688911 hasAuthorship W2085688911A5020441837 @default.
- W2085688911 hasAuthorship W2085688911A5032110988 @default.
- W2085688911 hasAuthorship W2085688911A5032888272 @default.
- W2085688911 hasAuthorship W2085688911A5033074805 @default.
- W2085688911 hasAuthorship W2085688911A5035081315 @default.
- W2085688911 hasAuthorship W2085688911A5065519136 @default.
- W2085688911 hasAuthorship W2085688911A5067810936 @default.
- W2085688911 hasAuthorship W2085688911A5075766799 @default.
- W2085688911 hasAuthorship W2085688911A5077441080 @default.
- W2085688911 hasBestOaLocation W20856889111 @default.
- W2085688911 hasConcept C115260700 @default.
- W2085688911 hasConcept C121332964 @default.
- W2085688911 hasConcept C121608353 @default.
- W2085688911 hasConcept C126322002 @default.
- W2085688911 hasConcept C126838900 @default.
- W2085688911 hasConcept C143409427 @default.
- W2085688911 hasConcept C155672457 @default.
- W2085688911 hasConcept C171250308 @default.
- W2085688911 hasConcept C185592680 @default.
- W2085688911 hasConcept C18903297 @default.
- W2085688911 hasConcept C192562407 @default.
- W2085688911 hasConcept C203014093 @default.
- W2085688911 hasConcept C23792430 @default.
- W2085688911 hasConcept C2777743550 @default.
- W2085688911 hasConcept C2778889443 @default.
- W2085688911 hasConcept C2780472235 @default.
- W2085688911 hasConcept C32546565 @default.
- W2085688911 hasConcept C46141821 @default.
- W2085688911 hasConcept C502942594 @default.
- W2085688911 hasConcept C530470458 @default.
- W2085688911 hasConcept C553184892 @default.
- W2085688911 hasConcept C62520636 @default.
- W2085688911 hasConcept C71924100 @default.
- W2085688911 hasConcept C73286259 @default.
- W2085688911 hasConcept C83042744 @default.
- W2085688911 hasConcept C86803240 @default.
- W2085688911 hasConcept C87023908 @default.
- W2085688911 hasConceptScore W2085688911C115260700 @default.
- W2085688911 hasConceptScore W2085688911C121332964 @default.
- W2085688911 hasConceptScore W2085688911C121608353 @default.
- W2085688911 hasConceptScore W2085688911C126322002 @default.
- W2085688911 hasConceptScore W2085688911C126838900 @default.
- W2085688911 hasConceptScore W2085688911C143409427 @default.