Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085697834> ?p ?o ?g. }
- W2085697834 endingPage "80" @default.
- W2085697834 startingPage "73" @default.
- W2085697834 abstract "Understanding the process of protein folding has been recognized as an important challenge for >70 years. It is, quintessentially, a thermodynamic problem and, arguably, thermodynamics is our most powerful discipline for understanding biological systems. Yet, despite all this, we still lack predictive understanding of protein folding. Is something missing from this picture? Understanding the process of protein folding has been recognized as an important challenge for >70 years. It is, quintessentially, a thermodynamic problem and, arguably, thermodynamics is our most powerful discipline for understanding biological systems. Yet, despite all this, we still lack predictive understanding of protein folding. Is something missing from this picture? The idea that the polypeptide chain can fold into multiple, mutually exclusive, meta-stable conformations, raising the question of why a folded protein has only one native conformation. A proposed solution to the question raised by chain frustration, namely, the energy of all alternative conformations is separated from that of the native fold by a large, highly unfavorable gap in energy. A graphic depiction of a population of folding proteins. The favorable-high-entropy, unfavorable-high-energy unfolded state is conceptualized as a wide funnel mouth, whereas the unfavorable-low-entropy, favorable-low-energy native state corresponds to a narrow funnel spout. Named after Professor N. Gō, who introduced it to reconcile the ostensibly competing contributions of short-range versus long-range interactions in proteins. The consistency principle proposes that energetic interactions at multiple length scales are consistent with the native conformation. Our restatement of the Gō consistency principle. There are two predominant energetically favorable regions for an alanyl dipeptide (see Figure 1 in main text); repeating backbone dihedral angles from these two regions result in segments of the two favorable hydrogen-bonded secondary structures, α helix and strands of β sheet. These secondary-structure segments interact favorably with one another, giving rise to super-secondary structure. Thus, short-range favorable interactions promote longer-range favorable interactions at successive levels of the structural hierarchy of a protein. A proposal as to why protein molecules, in which folding is guided by numerous energetic interactions at multiple length scales, adopt one predominant native conformation. (See Gō consistency principle.) The fundamental connection between arithmetic and geometry. There is a one-to-one correspondence between the set of all real numbers and a 1D line; that is, any real number corresponds to a unique point on the line and, conversely, any point on the line corresponds to a unique real number. Similar to Brownian motion, but with the further restriction that the path cannot cross itself. Specifically for proteins, a polypeptide chain path in 3D space in which there is no directional correlation between any two, arbitrarily chosen chain segments, and with the further restriction that the chain cannot pass through itself. Akin to absolute rate theory for small-molecule chemical reactions. The transition-state species is pictured at the top of an energy barrier separating U(nfolded) from N(ative). The experimental goal is to identify those residues that comprise the organizational ‘tipping point’ (the transition state)." @default.
- W2085697834 created "2016-06-24" @default.
- W2085697834 creator A5008815742 @default.
- W2085697834 creator A5016212041 @default.
- W2085697834 creator A5048210811 @default.
- W2085697834 creator A5055411327 @default.
- W2085697834 creator A5085464041 @default.
- W2085697834 creator A5090261047 @default.
- W2085697834 date "2005-02-01" @default.
- W2085697834 modified "2023-09-25" @default.
- W2085697834 title "Are proteins made from a limited parts list?" @default.
- W2085697834 cites W1515255916 @default.
- W2085697834 cites W1533038909 @default.
- W2085697834 cites W1548178570 @default.
- W2085697834 cites W1569560802 @default.
- W2085697834 cites W157808733 @default.
- W2085697834 cites W1586022877 @default.
- W2085697834 cites W1966851556 @default.
- W2085697834 cites W1975736414 @default.
- W2085697834 cites W1983684289 @default.
- W2085697834 cites W1989447327 @default.
- W2085697834 cites W1991863242 @default.
- W2085697834 cites W1999473806 @default.
- W2085697834 cites W1999599191 @default.
- W2085697834 cites W2001728606 @default.
- W2085697834 cites W2006253061 @default.
- W2085697834 cites W2007537829 @default.
- W2085697834 cites W2008049884 @default.
- W2085697834 cites W2009061668 @default.
- W2085697834 cites W2011235285 @default.
- W2085697834 cites W2012727595 @default.
- W2085697834 cites W2014479354 @default.
- W2085697834 cites W2019189533 @default.
- W2085697834 cites W2021350329 @default.
- W2085697834 cites W2028231353 @default.
- W2085697834 cites W2032932064 @default.
- W2085697834 cites W2043297959 @default.
- W2085697834 cites W2045777307 @default.
- W2085697834 cites W2047962024 @default.
- W2085697834 cites W2049902088 @default.
- W2085697834 cites W2055827177 @default.
- W2085697834 cites W2062668585 @default.
- W2085697834 cites W2067798279 @default.
- W2085697834 cites W2070856180 @default.
- W2085697834 cites W2078248419 @default.
- W2085697834 cites W2081516433 @default.
- W2085697834 cites W2087729059 @default.
- W2085697834 cites W2089383475 @default.
- W2085697834 cites W2101386484 @default.
- W2085697834 cites W2103050418 @default.
- W2085697834 cites W2104066375 @default.
- W2085697834 cites W2105880172 @default.
- W2085697834 cites W2109284125 @default.
- W2085697834 cites W2110113231 @default.
- W2085697834 cites W2113270377 @default.
- W2085697834 cites W2114304598 @default.
- W2085697834 cites W2138854816 @default.
- W2085697834 cites W2140992384 @default.
- W2085697834 cites W2146606022 @default.
- W2085697834 cites W2149763944 @default.
- W2085697834 cites W2153579093 @default.
- W2085697834 cites W2157607146 @default.
- W2085697834 cites W2160050027 @default.
- W2085697834 cites W2160502019 @default.
- W2085697834 cites W2163205696 @default.
- W2085697834 cites W2165890129 @default.
- W2085697834 cites W2171755502 @default.
- W2085697834 cites W2326635028 @default.
- W2085697834 cites W3047703793 @default.
- W2085697834 cites W4211239749 @default.
- W2085697834 cites W4294326239 @default.
- W2085697834 doi "https://doi.org/10.1016/j.tibs.2004.12.005" @default.
- W2085697834 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15691652" @default.
- W2085697834 hasPublicationYear "2005" @default.
- W2085697834 type Work @default.
- W2085697834 sameAs 2085697834 @default.
- W2085697834 citedByCount "60" @default.
- W2085697834 countsByYear W20856978342012 @default.
- W2085697834 countsByYear W20856978342013 @default.
- W2085697834 countsByYear W20856978342014 @default.
- W2085697834 countsByYear W20856978342015 @default.
- W2085697834 countsByYear W20856978342016 @default.
- W2085697834 countsByYear W20856978342017 @default.
- W2085697834 countsByYear W20856978342019 @default.
- W2085697834 countsByYear W20856978342021 @default.
- W2085697834 countsByYear W20856978342022 @default.
- W2085697834 crossrefType "journal-article" @default.
- W2085697834 hasAuthorship W2085697834A5008815742 @default.
- W2085697834 hasAuthorship W2085697834A5016212041 @default.
- W2085697834 hasAuthorship W2085697834A5048210811 @default.
- W2085697834 hasAuthorship W2085697834A5055411327 @default.
- W2085697834 hasAuthorship W2085697834A5085464041 @default.
- W2085697834 hasAuthorship W2085697834A5090261047 @default.
- W2085697834 hasConcept C119621388 @default.
- W2085697834 hasConcept C121332964 @default.
- W2085697834 hasConcept C144024400 @default.
- W2085697834 hasConcept C149923435 @default.
- W2085697834 hasConcept C154945302 @default.