Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085705445> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2085705445 endingPage "135" @default.
- W2085705445 startingPage "127" @default.
- W2085705445 abstract "In interactive genetic algorithms (iGAs), computer simulations prepare design candidates that are then evaluated by the user. Therefore, iGA can predict a user's preferences. Conventional iGA problems involve a search for a single optimum solution, and iGA were developed to find this single optimum. On the other hand, our target problems have several peaks in a function and there are small differences among these peaks. For such problems, it is better to show all the peaks to the user. Product recommendation in shopping sites on the web is one example of such problems. Several types of preference trend should be prepared for users in shopping sites. Exploitation and exploration are important mechanisms in GA search. To perform effective exploitation, the offspring generation method (crossover) is very important. Here, we introduced a new offspring generation method for iGA in multimodal problems. In the proposed method, individuals are clustered into subgroups and offspring are generated in each group. The proposed method was applied to an experimental iGA system to examine its effectiveness. In the experimental iGA system, users can decide on preferable t-shirts to buy. The results of the subjective experiment confirmed that the proposed method enables offspring generation with consideration of multimodal preferences, and the proposed mechanism was also shown not to adversely affect the performance of preference prediction." @default.
- W2085705445 created "2016-06-24" @default.
- W2085705445 creator A5036543534 @default.
- W2085705445 creator A5051702286 @default.
- W2085705445 creator A5067838604 @default.
- W2085705445 creator A5087321704 @default.
- W2085705445 date "2009-01-01" @default.
- W2085705445 modified "2023-10-05" @default.
- W2085705445 title "Offspring Generation Method for interactive Genetic Algorithm considering Multimodal Preference" @default.
- W2085705445 cites W1536492814 @default.
- W2085705445 cites W1999047234 @default.
- W2085705445 cites W2042281163 @default.
- W2085705445 cites W2044606475 @default.
- W2085705445 cites W2081670480 @default.
- W2085705445 cites W2089458547 @default.
- W2085705445 cites W2151019861 @default.
- W2085705445 cites W2904250082 @default.
- W2085705445 doi "https://doi.org/10.1527/tjsai.24.127" @default.
- W2085705445 hasPublicationYear "2009" @default.
- W2085705445 type Work @default.
- W2085705445 sameAs 2085705445 @default.
- W2085705445 citedByCount "5" @default.
- W2085705445 countsByYear W20857054452013 @default.
- W2085705445 countsByYear W20857054452014 @default.
- W2085705445 countsByYear W20857054452015 @default.
- W2085705445 crossrefType "journal-article" @default.
- W2085705445 hasAuthorship W2085705445A5036543534 @default.
- W2085705445 hasAuthorship W2085705445A5051702286 @default.
- W2085705445 hasAuthorship W2085705445A5067838604 @default.
- W2085705445 hasAuthorship W2085705445A5087321704 @default.
- W2085705445 hasBestOaLocation W20857054451 @default.
- W2085705445 hasConcept C105795698 @default.
- W2085705445 hasConcept C107457646 @default.
- W2085705445 hasConcept C112672928 @default.
- W2085705445 hasConcept C11413529 @default.
- W2085705445 hasConcept C119857082 @default.
- W2085705445 hasConcept C154945302 @default.
- W2085705445 hasConcept C2779234561 @default.
- W2085705445 hasConcept C2781249084 @default.
- W2085705445 hasConcept C33923547 @default.
- W2085705445 hasConcept C41008148 @default.
- W2085705445 hasConcept C54355233 @default.
- W2085705445 hasConcept C86803240 @default.
- W2085705445 hasConcept C8880873 @default.
- W2085705445 hasConceptScore W2085705445C105795698 @default.
- W2085705445 hasConceptScore W2085705445C107457646 @default.
- W2085705445 hasConceptScore W2085705445C112672928 @default.
- W2085705445 hasConceptScore W2085705445C11413529 @default.
- W2085705445 hasConceptScore W2085705445C119857082 @default.
- W2085705445 hasConceptScore W2085705445C154945302 @default.
- W2085705445 hasConceptScore W2085705445C2779234561 @default.
- W2085705445 hasConceptScore W2085705445C2781249084 @default.
- W2085705445 hasConceptScore W2085705445C33923547 @default.
- W2085705445 hasConceptScore W2085705445C41008148 @default.
- W2085705445 hasConceptScore W2085705445C54355233 @default.
- W2085705445 hasConceptScore W2085705445C86803240 @default.
- W2085705445 hasConceptScore W2085705445C8880873 @default.
- W2085705445 hasIssue "1" @default.
- W2085705445 hasLocation W20857054451 @default.
- W2085705445 hasOpenAccess W2085705445 @default.
- W2085705445 hasPrimaryLocation W20857054451 @default.
- W2085705445 hasRelatedWork W2961085424 @default.
- W2085705445 hasRelatedWork W3046775127 @default.
- W2085705445 hasRelatedWork W3170094116 @default.
- W2085705445 hasRelatedWork W4205958290 @default.
- W2085705445 hasRelatedWork W4285260836 @default.
- W2085705445 hasRelatedWork W4286629047 @default.
- W2085705445 hasRelatedWork W4306321456 @default.
- W2085705445 hasRelatedWork W4306674287 @default.
- W2085705445 hasRelatedWork W4386462264 @default.
- W2085705445 hasRelatedWork W4224009465 @default.
- W2085705445 hasVolume "24" @default.
- W2085705445 isParatext "false" @default.
- W2085705445 isRetracted "false" @default.
- W2085705445 magId "2085705445" @default.
- W2085705445 workType "article" @default.