Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085751787> ?p ?o ?g. }
- W2085751787 endingPage "187" @default.
- W2085751787 startingPage "176" @default.
- W2085751787 abstract "Multivariate curve resolution (MCR) and multivariate clustering methods along with other chemometric methods are proposed to improve the analysis of gas chromatography–mass spectrometry (GC–MS) fingerprints of secondary metabolites in citrus fruits peels. In this way, chromatographic problems such as baseline/background contribution, low S/N peaks, asymmetric peaks, retention time shifts, and co-elution (overlapped and embedded peaks) occurred during GC–MS analysis of chromatographic fingerprints are solved using the proposed strategy. In this study, first, informative GC–MS fingerprints of citrus secondary metabolites are generated and then, whole data sets are segmented to some chromatographic regions. Each chromatographic segment for eighteen samples is column-wise augmented with m/z values as common mode to preserve bilinear model assumption needed for MCR analysis. Extended multivariate curve resolution alternating least squares (MCR-ALS) is used to obtain pure elution and mass spectral profiles for the components present in each chromatographic segment as well as their relative concentrations. After finding the best MCR-ALS model, the relative concentrations for resolved components are examined using principal component analysis (PCA) and k-nearest neighbor (KNN) clustering methods to explore similarities and dissimilarities among different citrus samples according to their secondary metabolites. In general, four clear-cut clusters are determined and the chemical markers (chemotypes) responsible to this differentiation are characterized by subsequent discriminate analysis using counter-propagation artificial neural network (CPANN) method. It is concluded that the use of proposed strategy is a more reliable and faster way for the analysis of large data sets like chromatographic fingerprints of natural products compared to conventional methods." @default.
- W2085751787 created "2016-06-24" @default.
- W2085751787 creator A5048205204 @default.
- W2085751787 creator A5054745164 @default.
- W2085751787 creator A5065108317 @default.
- W2085751787 creator A5087166711 @default.
- W2085751787 date "2012-08-01" @default.
- W2085751787 modified "2023-10-10" @default.
- W2085751787 title "Chromatographic fingerprint analysis of secondary metabolites in citrus fruits peels using gas chromatography–mass spectrometry combined with advanced chemometric methods" @default.
- W2085751787 cites W1539047729 @default.
- W2085751787 cites W1965935740 @default.
- W2085751787 cites W1966366670 @default.
- W2085751787 cites W1968139356 @default.
- W2085751787 cites W1976681541 @default.
- W2085751787 cites W1977000420 @default.
- W2085751787 cites W1978406729 @default.
- W2085751787 cites W1982116065 @default.
- W2085751787 cites W1984638142 @default.
- W2085751787 cites W1986157931 @default.
- W2085751787 cites W1987578403 @default.
- W2085751787 cites W1990366290 @default.
- W2085751787 cites W1993419109 @default.
- W2085751787 cites W2008942323 @default.
- W2085751787 cites W2014715836 @default.
- W2085751787 cites W2016840092 @default.
- W2085751787 cites W2024349178 @default.
- W2085751787 cites W2029420020 @default.
- W2085751787 cites W2030365914 @default.
- W2085751787 cites W2035393251 @default.
- W2085751787 cites W2037294414 @default.
- W2085751787 cites W2039902016 @default.
- W2085751787 cites W2043076340 @default.
- W2085751787 cites W2043580075 @default.
- W2085751787 cites W2050738465 @default.
- W2085751787 cites W2051325646 @default.
- W2085751787 cites W2058579606 @default.
- W2085751787 cites W2060053254 @default.
- W2085751787 cites W2064576380 @default.
- W2085751787 cites W2065626271 @default.
- W2085751787 cites W2068707836 @default.
- W2085751787 cites W2069753895 @default.
- W2085751787 cites W2070417932 @default.
- W2085751787 cites W2079355261 @default.
- W2085751787 cites W2080547491 @default.
- W2085751787 cites W2081051946 @default.
- W2085751787 cites W2082505332 @default.
- W2085751787 cites W2085452927 @default.
- W2085751787 cites W2089305080 @default.
- W2085751787 cites W2089468765 @default.
- W2085751787 cites W2091634599 @default.
- W2085751787 cites W2092149381 @default.
- W2085751787 cites W2092280582 @default.
- W2085751787 cites W2093512816 @default.
- W2085751787 cites W2099373664 @default.
- W2085751787 cites W2109606373 @default.
- W2085751787 cites W2110187826 @default.
- W2085751787 cites W2114963496 @default.
- W2085751787 cites W2140470590 @default.
- W2085751787 cites W2146848973 @default.
- W2085751787 cites W2148938468 @default.
- W2085751787 cites W2150944559 @default.
- W2085751787 cites W2157591494 @default.
- W2085751787 cites W2168112857 @default.
- W2085751787 cites W2169163082 @default.
- W2085751787 cites W2329377842 @default.
- W2085751787 doi "https://doi.org/10.1016/j.chroma.2012.06.011" @default.
- W2085751787 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22766429" @default.
- W2085751787 hasPublicationYear "2012" @default.
- W2085751787 type Work @default.
- W2085751787 sameAs 2085751787 @default.
- W2085751787 citedByCount "46" @default.
- W2085751787 countsByYear W20857517872013 @default.
- W2085751787 countsByYear W20857517872014 @default.
- W2085751787 countsByYear W20857517872015 @default.
- W2085751787 countsByYear W20857517872016 @default.
- W2085751787 countsByYear W20857517872017 @default.
- W2085751787 countsByYear W20857517872018 @default.
- W2085751787 countsByYear W20857517872019 @default.
- W2085751787 countsByYear W20857517872020 @default.
- W2085751787 countsByYear W20857517872021 @default.
- W2085751787 countsByYear W20857517872022 @default.
- W2085751787 countsByYear W20857517872023 @default.
- W2085751787 crossrefType "journal-article" @default.
- W2085751787 hasAuthorship W2085751787A5048205204 @default.
- W2085751787 hasAuthorship W2085751787A5054745164 @default.
- W2085751787 hasAuthorship W2085751787A5065108317 @default.
- W2085751787 hasAuthorship W2085751787A5087166711 @default.
- W2085751787 hasConcept C105795698 @default.
- W2085751787 hasConcept C113196181 @default.
- W2085751787 hasConcept C123460561 @default.
- W2085751787 hasConcept C138268822 @default.
- W2085751787 hasConcept C151304367 @default.
- W2085751787 hasConcept C154945302 @default.
- W2085751787 hasConcept C161584116 @default.
- W2085751787 hasConcept C162356407 @default.
- W2085751787 hasConcept C185592680 @default.
- W2085751787 hasConcept C27438332 @default.
- W2085751787 hasConcept C2777826928 @default.