Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085759521> ?p ?o ?g. }
- W2085759521 endingPage "8513" @default.
- W2085759521 startingPage "8504" @default.
- W2085759521 abstract "ABSTRACT In recent decades, Raman spectroscopy has entered the biological and medical fields. It enables nondestructive analysis of structural details at the molecular level and has been used to study viruses and their constituents. Here, we used Raman spectroscopy to study echovirus 1 (EV1), a small, nonenveloped human pathogen, in two different uncoating states induced by heat treatments. Raman signals of capsid proteins and RNA genome were observed from the intact virus, the uncoating intermediate, and disrupted virions. Transmission electron microscopy data revealed general structural changes between the studied particles. Compared to spectral characteristics of proteins in the intact virion, those of the proteins of the heat-treated particles indicated reduced α-helix content with respect to β-sheets and coil structures. Changes observed in tryptophan and tyrosine signals suggest an increasingly hydrophilic environment around these residues. RNA signals revealed a change in the environment of the genome and in its conformation. The ionized-carbonyl vibrations showed small changes between the intact virion and the uncoating intermediate, which points to cleavage of salt bridges in the protein structure during the uncoating process. In conclusion, our data reveal distinguishable Raman signatures of the intact, intermediate, and disrupted EV1 particles. These changes indicate structural, chemical, and solute-solvent alterations in the genome and in the capsid proteins and lay the essential groundwork for investigating the uncoating of EV1 and related viruses in real time. IMPORTANCE In order to combat virus infection, we need to know the details of virus uncoating. We present here the novel Raman signatures for opened and intact echovirus 1. This gives hope that the signatures may be used in the near future to evaluate the ambient conditions in endosomes leading to virus uncoating using, e.g., coherent anti-Stokes Raman spectroscopy (CARS) imaging. These studies will complement structural studies on virus uncoating. In addition, Raman/CARS imaging offers the possibility of making dynamic live measurements in vitro and in cells which are impossible to measure by, for example, cryo-electron tomography. Furthermore, as viral Raman spectra can be overwhelmed with various contaminants, our study is highly relevant in demonstrating the importance of sample preparation for Raman spectroscopy in the field of virology." @default.
- W2085759521 created "2016-06-24" @default.
- W2085759521 creator A5011335222 @default.
- W2085759521 creator A5018786715 @default.
- W2085759521 creator A5052501107 @default.
- W2085759521 creator A5067929417 @default.
- W2085759521 creator A5084648319 @default.
- W2085759521 creator A5088780439 @default.
- W2085759521 date "2014-08-01" @default.
- W2085759521 modified "2023-10-12" @default.
- W2085759521 title "Raman Spectroscopic Signatures of Echovirus 1 Uncoating" @default.
- W2085759521 cites W1485299058 @default.
- W2085759521 cites W1556533824 @default.
- W2085759521 cites W1558709559 @default.
- W2085759521 cites W1561425460 @default.
- W2085759521 cites W1921791127 @default.
- W2085759521 cites W1951621827 @default.
- W2085759521 cites W1963638325 @default.
- W2085759521 cites W1963833984 @default.
- W2085759521 cites W1966320582 @default.
- W2085759521 cites W1969096518 @default.
- W2085759521 cites W1970258969 @default.
- W2085759521 cites W1975542665 @default.
- W2085759521 cites W1978843464 @default.
- W2085759521 cites W1980730655 @default.
- W2085759521 cites W1983578237 @default.
- W2085759521 cites W1989607438 @default.
- W2085759521 cites W1992143756 @default.
- W2085759521 cites W2001342993 @default.
- W2085759521 cites W2002062489 @default.
- W2085759521 cites W2002685197 @default.
- W2085759521 cites W2007879544 @default.
- W2085759521 cites W2015476284 @default.
- W2085759521 cites W2021978218 @default.
- W2085759521 cites W2022421385 @default.
- W2085759521 cites W2024450344 @default.
- W2085759521 cites W2039702920 @default.
- W2085759521 cites W2041123313 @default.
- W2085759521 cites W2049671810 @default.
- W2085759521 cites W2055055823 @default.
- W2085759521 cites W2056890384 @default.
- W2085759521 cites W2056958787 @default.
- W2085759521 cites W2057401447 @default.
- W2085759521 cites W2060520834 @default.
- W2085759521 cites W2066248082 @default.
- W2085759521 cites W2072013456 @default.
- W2085759521 cites W2077231187 @default.
- W2085759521 cites W2077831149 @default.
- W2085759521 cites W2080652299 @default.
- W2085759521 cites W2083472933 @default.
- W2085759521 cites W2086319081 @default.
- W2085759521 cites W2094792444 @default.
- W2085759521 cites W2107325919 @default.
- W2085759521 cites W2108176374 @default.
- W2085759521 cites W2120658521 @default.
- W2085759521 cites W2130812567 @default.
- W2085759521 cites W2132629607 @default.
- W2085759521 cites W2139756641 @default.
- W2085759521 cites W2140975932 @default.
- W2085759521 cites W2151531480 @default.
- W2085759521 cites W2152857843 @default.
- W2085759521 cites W2152938732 @default.
- W2085759521 cites W2157586119 @default.
- W2085759521 cites W2160564267 @default.
- W2085759521 cites W2165245883 @default.
- W2085759521 cites W2166869734 @default.
- W2085759521 cites W2399836541 @default.
- W2085759521 cites W4210955389 @default.
- W2085759521 cites W4236064941 @default.
- W2085759521 cites W4251950018 @default.
- W2085759521 doi "https://doi.org/10.1128/jvi.03398-13" @default.
- W2085759521 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4135968" @default.
- W2085759521 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24850734" @default.
- W2085759521 hasPublicationYear "2014" @default.
- W2085759521 type Work @default.
- W2085759521 sameAs 2085759521 @default.
- W2085759521 citedByCount "22" @default.
- W2085759521 countsByYear W20857595212015 @default.
- W2085759521 countsByYear W20857595212016 @default.
- W2085759521 countsByYear W20857595212017 @default.
- W2085759521 countsByYear W20857595212018 @default.
- W2085759521 countsByYear W20857595212019 @default.
- W2085759521 countsByYear W20857595212020 @default.
- W2085759521 countsByYear W20857595212021 @default.
- W2085759521 countsByYear W20857595212022 @default.
- W2085759521 countsByYear W20857595212023 @default.
- W2085759521 crossrefType "journal-article" @default.
- W2085759521 hasAuthorship W2085759521A5011335222 @default.
- W2085759521 hasAuthorship W2085759521A5018786715 @default.
- W2085759521 hasAuthorship W2085759521A5052501107 @default.
- W2085759521 hasAuthorship W2085759521A5067929417 @default.
- W2085759521 hasAuthorship W2085759521A5084648319 @default.
- W2085759521 hasAuthorship W2085759521A5088780439 @default.
- W2085759521 hasBestOaLocation W20857595211 @default.
- W2085759521 hasConcept C104317684 @default.
- W2085759521 hasConcept C120665830 @default.
- W2085759521 hasConcept C121332964 @default.
- W2085759521 hasConcept C12554922 @default.