Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085759741> ?p ?o ?g. }
- W2085759741 endingPage "61" @default.
- W2085759741 startingPage "38" @default.
- W2085759741 abstract "Purpose The purpose of this paper is to provide a methodology with which to perform variable screening and optimization in automotive crashworthiness design. Design/methodology/approach The screening method is based on response surface methodology in which linear response surfaces are used to create approximations to the design response. The response surfaces are used to estimate the sensitivities of the responses with respect to the design variables while the variance is used to estimate the confidence interval of the regression coefficients. The sampling is based on the D ‐optimality criterion with over‐sampling to improve noise filtering and find the best estimate of the regression coefficients. The coefficients and their confidence intervals as determined using analysis of variance (ANOVA), are used to construct bar charts for the purpose of selecting the important variables. Findings A known analytical function is first used to illustrate the effectiveness of screening. Using the finite element method (FEM), a complex vehicle occupant impact problem and a full vehicle multidisciplinary problem featuring frontal impact and torsional modal analysis of the vehicle body are modeled and parameterized. Two optimizations are conducted for each FEM example, one with the full variable set and one with a screened subset. An iterative, successive linear approximation method is used to achieve convergence. It is shown that, although significantly different final designs may be obtained, an appropriately selected subset of variables is effective while significantly reducing computational cost. Practical implications The method illustrated provides a practical approach to the screening of variables in simulation‐based design optimization, especially in automotive crashworthiness applications with costly simulations. It is shown that the reduction of variables used in the optimization process significantly reduces the total cost of the optimization. Originality/value Although variable screening has been used in other disciplines, the use of response surfaces to determine the variable screening information is novel in the crashworthiness field." @default.
- W2085759741 created "2016-06-24" @default.
- W2085759741 creator A5015319272 @default.
- W2085759741 creator A5039147981 @default.
- W2085759741 creator A5068236854 @default.
- W2085759741 creator A5072234663 @default.
- W2085759741 date "2005-01-01" @default.
- W2085759741 modified "2023-10-05" @default.
- W2085759741 title "Automotive crashworthiness design using response surface‐based variable screening and optimization" @default.
- W2085759741 cites W151777208 @default.
- W2085759741 cites W1992068214 @default.
- W2085759741 cites W1996272892 @default.
- W2085759741 cites W1997954066 @default.
- W2085759741 cites W2018044188 @default.
- W2085759741 cites W2064345046 @default.
- W2085759741 cites W2067382035 @default.
- W2085759741 cites W2077940471 @default.
- W2085759741 cites W2092781360 @default.
- W2085759741 cites W2098043077 @default.
- W2085759741 cites W2127286281 @default.
- W2085759741 cites W2152630219 @default.
- W2085759741 cites W2161104607 @default.
- W2085759741 cites W2315029287 @default.
- W2085759741 cites W2331415460 @default.
- W2085759741 cites W2334452417 @default.
- W2085759741 cites W2497946479 @default.
- W2085759741 cites W4237151101 @default.
- W2085759741 cites W4255411990 @default.
- W2085759741 doi "https://doi.org/10.1108/02644400510572406" @default.
- W2085759741 hasPublicationYear "2005" @default.
- W2085759741 type Work @default.
- W2085759741 sameAs 2085759741 @default.
- W2085759741 citedByCount "84" @default.
- W2085759741 countsByYear W20857597412012 @default.
- W2085759741 countsByYear W20857597412013 @default.
- W2085759741 countsByYear W20857597412014 @default.
- W2085759741 countsByYear W20857597412015 @default.
- W2085759741 countsByYear W20857597412016 @default.
- W2085759741 countsByYear W20857597412017 @default.
- W2085759741 countsByYear W20857597412018 @default.
- W2085759741 countsByYear W20857597412019 @default.
- W2085759741 countsByYear W20857597412020 @default.
- W2085759741 countsByYear W20857597412021 @default.
- W2085759741 countsByYear W20857597412022 @default.
- W2085759741 countsByYear W20857597412023 @default.
- W2085759741 crossrefType "journal-article" @default.
- W2085759741 hasAuthorship W2085759741A5015319272 @default.
- W2085759741 hasAuthorship W2085759741A5039147981 @default.
- W2085759741 hasAuthorship W2085759741A5068236854 @default.
- W2085759741 hasAuthorship W2085759741A5072234663 @default.
- W2085759741 hasConcept C105795698 @default.
- W2085759741 hasConcept C106131492 @default.
- W2085759741 hasConcept C119599485 @default.
- W2085759741 hasConcept C126255220 @default.
- W2085759741 hasConcept C127413603 @default.
- W2085759741 hasConcept C134306372 @default.
- W2085759741 hasConcept C135628077 @default.
- W2085759741 hasConcept C140779682 @default.
- W2085759741 hasConcept C146978453 @default.
- W2085759741 hasConcept C182365436 @default.
- W2085759741 hasConcept C2779240047 @default.
- W2085759741 hasConcept C33923547 @default.
- W2085759741 hasConcept C34559072 @default.
- W2085759741 hasConcept C41008148 @default.
- W2085759741 hasConcept C526921623 @default.
- W2085759741 hasConcept C66938386 @default.
- W2085759741 hasConceptScore W2085759741C105795698 @default.
- W2085759741 hasConceptScore W2085759741C106131492 @default.
- W2085759741 hasConceptScore W2085759741C119599485 @default.
- W2085759741 hasConceptScore W2085759741C126255220 @default.
- W2085759741 hasConceptScore W2085759741C127413603 @default.
- W2085759741 hasConceptScore W2085759741C134306372 @default.
- W2085759741 hasConceptScore W2085759741C135628077 @default.
- W2085759741 hasConceptScore W2085759741C140779682 @default.
- W2085759741 hasConceptScore W2085759741C146978453 @default.
- W2085759741 hasConceptScore W2085759741C182365436 @default.
- W2085759741 hasConceptScore W2085759741C2779240047 @default.
- W2085759741 hasConceptScore W2085759741C33923547 @default.
- W2085759741 hasConceptScore W2085759741C34559072 @default.
- W2085759741 hasConceptScore W2085759741C41008148 @default.
- W2085759741 hasConceptScore W2085759741C526921623 @default.
- W2085759741 hasConceptScore W2085759741C66938386 @default.
- W2085759741 hasIssue "1" @default.
- W2085759741 hasLocation W20857597411 @default.
- W2085759741 hasOpenAccess W2085759741 @default.
- W2085759741 hasPrimaryLocation W20857597411 @default.
- W2085759741 hasRelatedWork W1728646996 @default.
- W2085759741 hasRelatedWork W2027186841 @default.
- W2085759741 hasRelatedWork W2069000834 @default.
- W2085759741 hasRelatedWork W2088259851 @default.
- W2085759741 hasRelatedWork W2089870231 @default.
- W2085759741 hasRelatedWork W2228831362 @default.
- W2085759741 hasRelatedWork W2365102018 @default.
- W2085759741 hasRelatedWork W2883989481 @default.
- W2085759741 hasRelatedWork W2899084033 @default.
- W2085759741 hasRelatedWork W3022969367 @default.
- W2085759741 hasVolume "22" @default.
- W2085759741 isParatext "false" @default.