Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085776338> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2085776338 abstract "Research highlights? We propose a novel system that can identify many kinds of digital signal types from low density to high density. ? We propose a system that works very well in low level of SNRs. ? For the first time in domain of digital communication signal recognition we have used the bees algorithm for feature selection and applied the extended delta-bar-delta (EDBD) algorithm and conjugate gradient (CG) algorithm. ? We propose a system that needs a lower sample of signals and little number of features for recognition of a lot of digital communication signals. Automatic communication signal recognition plays an important role for many novel computer and communication technologies. Most of the proposed techniques can only identify a few kinds of digital signal and/or low order of them. They usually require high levels of signal to noise ratio (SNR). In this paper, we investigate twofold. First, we propose an efficient system that uses a combination set of spectral characteristics and higher order moments up to eighth and higher order cumulants up to eighth as the effective features. As the classifier we used a multi-layer perceptron (MLP) neural network. In this stage we investigate different learning algorithms of MLP neural networks that some of them, such as quick prop (QP) learning algorithm, extended delta-bar-delta (EDBD), super self adaptive back propagation (SuperSAB) and conjugate gradient (CG) are proposed for the first time in the area of communication signals recognition. Experimental results show that proposed system discriminates a lot of digital communication signals with high accuracy even at very low SNRs. But a lot of features are used for this recognition. Then at the second fold, in order to reduce the complexity of the recognizer, we have proposed a novel hybrid intelligent technique. In this technique we have optimized the classifier design by Bees Algorithm (BA) for selection of the best features that are fed to the classifier. Simulation results show that the proposed technique has very high recognition accuracy with seven features selected by BA." @default.
- W2085776338 created "2016-06-24" @default.
- W2085776338 creator A5027663536 @default.
- W2085776338 date "2011-05-01" @default.
- W2085776338 modified "2023-09-25" @default.
- W2085776338 title "Hybrid intelligent technique for automatic communication signals recognition using Bees Algorithm and MLP neural networks based on the efficient features" @default.
- W2085776338 cites W1541007220 @default.
- W2085776338 cites W1564490639 @default.
- W2085776338 cites W1572919062 @default.
- W2085776338 cites W16088600 @default.
- W2085776338 cites W1829742192 @default.
- W2085776338 cites W1844202488 @default.
- W2085776338 cites W1964737053 @default.
- W2085776338 cites W1972740834 @default.
- W2085776338 cites W1988502816 @default.
- W2085776338 cites W2006544565 @default.
- W2085776338 cites W2017337590 @default.
- W2085776338 cites W2035328597 @default.
- W2085776338 cites W2083918846 @default.
- W2085776338 cites W2099799415 @default.
- W2085776338 cites W2124776405 @default.
- W2085776338 cites W2126971395 @default.
- W2085776338 cites W2129363901 @default.
- W2085776338 cites W2130014182 @default.
- W2085776338 cites W2133578774 @default.
- W2085776338 cites W2133583242 @default.
- W2085776338 cites W2153538387 @default.
- W2085776338 cites W2160208155 @default.
- W2085776338 cites W2161439392 @default.
- W2085776338 cites W2161981037 @default.
- W2085776338 cites W2170778725 @default.
- W2085776338 cites W2798333393 @default.
- W2085776338 cites W3207342693 @default.
- W2085776338 doi "https://doi.org/10.1016/j.eswa.2010.11.021" @default.
- W2085776338 hasPublicationYear "2011" @default.
- W2085776338 type Work @default.
- W2085776338 sameAs 2085776338 @default.
- W2085776338 citedByCount "12" @default.
- W2085776338 countsByYear W20857763382013 @default.
- W2085776338 countsByYear W20857763382014 @default.
- W2085776338 countsByYear W20857763382015 @default.
- W2085776338 countsByYear W20857763382016 @default.
- W2085776338 countsByYear W20857763382017 @default.
- W2085776338 countsByYear W20857763382018 @default.
- W2085776338 crossrefType "journal-article" @default.
- W2085776338 hasAuthorship W2085776338A5027663536 @default.
- W2085776338 hasConcept C101765175 @default.
- W2085776338 hasConcept C11413529 @default.
- W2085776338 hasConcept C153180895 @default.
- W2085776338 hasConcept C154945302 @default.
- W2085776338 hasConcept C179717631 @default.
- W2085776338 hasConcept C41008148 @default.
- W2085776338 hasConcept C50644808 @default.
- W2085776338 hasConcept C60908668 @default.
- W2085776338 hasConcept C76155785 @default.
- W2085776338 hasConcept C81184566 @default.
- W2085776338 hasConceptScore W2085776338C101765175 @default.
- W2085776338 hasConceptScore W2085776338C11413529 @default.
- W2085776338 hasConceptScore W2085776338C153180895 @default.
- W2085776338 hasConceptScore W2085776338C154945302 @default.
- W2085776338 hasConceptScore W2085776338C179717631 @default.
- W2085776338 hasConceptScore W2085776338C41008148 @default.
- W2085776338 hasConceptScore W2085776338C50644808 @default.
- W2085776338 hasConceptScore W2085776338C60908668 @default.
- W2085776338 hasConceptScore W2085776338C76155785 @default.
- W2085776338 hasConceptScore W2085776338C81184566 @default.
- W2085776338 hasLocation W20857763381 @default.
- W2085776338 hasOpenAccess W2085776338 @default.
- W2085776338 hasPrimaryLocation W20857763381 @default.
- W2085776338 hasRelatedWork W1971368503 @default.
- W2085776338 hasRelatedWork W1975337058 @default.
- W2085776338 hasRelatedWork W1994143366 @default.
- W2085776338 hasRelatedWork W1994980061 @default.
- W2085776338 hasRelatedWork W2061913779 @default.
- W2085776338 hasRelatedWork W2074371913 @default.
- W2085776338 hasRelatedWork W2093049985 @default.
- W2085776338 hasRelatedWork W2095951204 @default.
- W2085776338 hasRelatedWork W2103300914 @default.
- W2085776338 hasRelatedWork W2103516317 @default.
- W2085776338 hasRelatedWork W2124945154 @default.
- W2085776338 hasRelatedWork W2132757737 @default.
- W2085776338 hasRelatedWork W2213742129 @default.
- W2085776338 hasRelatedWork W2368332589 @default.
- W2085776338 hasRelatedWork W2958505967 @default.
- W2085776338 hasRelatedWork W3140364859 @default.
- W2085776338 hasRelatedWork W974346103 @default.
- W2085776338 hasRelatedWork W196068186 @default.
- W2085776338 hasRelatedWork W2184011355 @default.
- W2085776338 hasRelatedWork W2803670485 @default.
- W2085776338 isParatext "false" @default.
- W2085776338 isRetracted "false" @default.
- W2085776338 magId "2085776338" @default.
- W2085776338 workType "article" @default.