Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085791775> ?p ?o ?g. }
- W2085791775 endingPage "34" @default.
- W2085791775 startingPage "21" @default.
- W2085791775 abstract "This paper presents detailed numerical simulations and theoretical analysis of different possible experimental schemes to study the thermophysical and transport properties of High Energy Density (HED) matter generated by the interaction of intense heavy ion beams. The considered beam parameters are those which will be available at the future Facility for Antiprotons and Ion Research (FAIR) at Darmstadt [W.F. Henneing, Nucl. Instrum. Methods, B214, (2004) 211]. This work has shown that an intense heavy ion beam can be used employing two very different configurations to study HED states in matter. In the first scheme, a sample material is uniformly and isochorically heated by the beam and the heated material is subsequently allowed to expand isentropically. Depending on the specific energy deposited in the material, one may access all the interesting physical states, including that of an expanded hot liquid (EHL), two-phase liquid–gas (2PLG) region, critical point (CP) parameters as well as strongly coupled plasma (SCP) states during the expansion. This scheme is named HIHEX (Heavy Ion Heating and EXpansion). We have considered a 1 GeV/u uranium beam with an intensity, N = 1010–1012 ions that are delivered in a single bunch, 50 ns long. The particle intensity distribution in the transverse direction is assumed to be Gaussian with a full width at half maximum (FWHM) in the range of 1–4 mm. We note that the estimated critical temperatures for many metals are very high which are very difficult to access using traditional techniques of shock compression of matter. Employing the proposed HIHEX scheme, one can easily achieve the required temperature by depositing corresponding specific energy in the sample. Solid as well as porous targets have been used in our study. In the second scheme, a sample material like frozen hydrogen that is enclosed in a cylindrical shell of a high-Z material like gold or lead, is imploded by the ion beam. This scheme is specially designed to generate multiple reflection of shocks in the target that leads to a low-entropy compression of the sample material. As a result of this, one achieves super-high densities (up to 30 times solid density) and ultrahigh pressures (3–30 Mbar) in the hydrogen. If one uses a hollow beam with an annular focal spot, hydrogen is not directly heated by the ion beam that leads to a low final temperature (of the order of a few thousand K). This scheme is therefore suitable to study the problem of hydrogen metallization. In case one uses a circular focal spot, although the hydrogen is strongly heated by the beam, one still achieves a very high compression because the pressure in the surrounding shell is orders of magnitude higher than that in hydrogen. However, in this case the final hydrogen temperature is much higher (of the order of a few eV) than in the previous case. This configuration is thus suitable to study the interiors of the giant planets and is named LAPLAS (LAboratory PLAnetary Science). We have also analyzed the hydrodynamic stability of the LAPLAS target and we find that the Rayleigh–Taylor (RT) and Richtmeyer–Meshkov (RM) instabilities will not pose any serious problems to this scheme." @default.
- W2085791775 created "2016-06-24" @default.
- W2085791775 creator A5000243636 @default.
- W2085791775 creator A5002269128 @default.
- W2085791775 creator A5022726207 @default.
- W2085791775 creator A5034755485 @default.
- W2085791775 creator A5045662393 @default.
- W2085791775 creator A5069879754 @default.
- W2085791775 creator A5075555805 @default.
- W2085791775 creator A5089063584 @default.
- W2085791775 date "2006-06-01" @default.
- W2085791775 modified "2023-10-16" @default.
- W2085791775 title "Numerical simulations and theoretical analysis of High Energy Density experiments at the next generation of ion beam facilities at Darmstadt: The HEDgeHOB collaboration" @default.
- W2085791775 cites W1564801213 @default.
- W2085791775 cites W1963981897 @default.
- W2085791775 cites W1970502116 @default.
- W2085791775 cites W1974016411 @default.
- W2085791775 cites W1978657060 @default.
- W2085791775 cites W1983679337 @default.
- W2085791775 cites W1988413101 @default.
- W2085791775 cites W1989379048 @default.
- W2085791775 cites W2001034111 @default.
- W2085791775 cites W2002073534 @default.
- W2085791775 cites W2002915288 @default.
- W2085791775 cites W2003339845 @default.
- W2085791775 cites W2006258874 @default.
- W2085791775 cites W2012519910 @default.
- W2085791775 cites W2012658852 @default.
- W2085791775 cites W2014606493 @default.
- W2085791775 cites W2018452485 @default.
- W2085791775 cites W2020810842 @default.
- W2085791775 cites W2026838983 @default.
- W2085791775 cites W2026905893 @default.
- W2085791775 cites W2026978924 @default.
- W2085791775 cites W2029192155 @default.
- W2085791775 cites W2030567553 @default.
- W2085791775 cites W2032381250 @default.
- W2085791775 cites W2037260677 @default.
- W2085791775 cites W2041274698 @default.
- W2085791775 cites W2045616605 @default.
- W2085791775 cites W2048140310 @default.
- W2085791775 cites W2051429786 @default.
- W2085791775 cites W2058995584 @default.
- W2085791775 cites W2060371658 @default.
- W2085791775 cites W2061139410 @default.
- W2085791775 cites W2062724601 @default.
- W2085791775 cites W2065752057 @default.
- W2085791775 cites W2066539004 @default.
- W2085791775 cites W2071689682 @default.
- W2085791775 cites W2079326677 @default.
- W2085791775 cites W2084477100 @default.
- W2085791775 cites W2090879313 @default.
- W2085791775 cites W2100384120 @default.
- W2085791775 cites W2104173549 @default.
- W2085791775 cites W2106718921 @default.
- W2085791775 cites W2109451901 @default.
- W2085791775 cites W2116873877 @default.
- W2085791775 cites W2132155358 @default.
- W2085791775 cites W2133817964 @default.
- W2085791775 cites W2144449005 @default.
- W2085791775 cites W2153259447 @default.
- W2085791775 cites W4243677091 @default.
- W2085791775 doi "https://doi.org/10.1016/j.hedp.2006.02.001" @default.
- W2085791775 hasPublicationYear "2006" @default.
- W2085791775 type Work @default.
- W2085791775 sameAs 2085791775 @default.
- W2085791775 citedByCount "36" @default.
- W2085791775 countsByYear W20857917752013 @default.
- W2085791775 countsByYear W20857917752014 @default.
- W2085791775 countsByYear W20857917752016 @default.
- W2085791775 countsByYear W20857917752017 @default.
- W2085791775 countsByYear W20857917752018 @default.
- W2085791775 countsByYear W20857917752019 @default.
- W2085791775 countsByYear W20857917752020 @default.
- W2085791775 countsByYear W20857917752021 @default.
- W2085791775 countsByYear W20857917752022 @default.
- W2085791775 crossrefType "journal-article" @default.
- W2085791775 hasAuthorship W2085791775A5000243636 @default.
- W2085791775 hasAuthorship W2085791775A5002269128 @default.
- W2085791775 hasAuthorship W2085791775A5022726207 @default.
- W2085791775 hasAuthorship W2085791775A5034755485 @default.
- W2085791775 hasAuthorship W2085791775A5045662393 @default.
- W2085791775 hasAuthorship W2085791775A5069879754 @default.
- W2085791775 hasAuthorship W2085791775A5075555805 @default.
- W2085791775 hasAuthorship W2085791775A5089063584 @default.
- W2085791775 hasConcept C108649604 @default.
- W2085791775 hasConcept C120665830 @default.
- W2085791775 hasConcept C121332964 @default.
- W2085791775 hasConcept C126322002 @default.
- W2085791775 hasConcept C127413603 @default.
- W2085791775 hasConcept C145148216 @default.
- W2085791775 hasConcept C154954056 @default.
- W2085791775 hasConcept C159985019 @default.
- W2085791775 hasConcept C168834538 @default.
- W2085791775 hasConcept C184779094 @default.
- W2085791775 hasConcept C185544564 @default.
- W2085791775 hasConcept C192562407 @default.
- W2085791775 hasConcept C204323151 @default.