Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085803345> ?p ?o ?g. }
- W2085803345 endingPage "40942" @default.
- W2085803345 startingPage "40933" @default.
- W2085803345 abstract "The 5′ regions of eukaryotic mRNAs often contain upstream open reading frames (uORFs). The Neurospora crassa arg-2 uORF encodes the 24-residue arginine attenuator peptide (AAP). This regulatory uORF-encoded peptide, which is evolutionarily conserved in fungal transcripts specifying an arginine biosynthetic enzyme, functions as a nascent peptide within the ribosomal tunnel and negatively regulates gene expression. The nascent AAP causes ribosomes to stall at the uORF stop codon in response to arginine, thus, blocking ribosomes from reaching the ARG-2 initiation codon. Here scanning mutagenesis with alanine and proline was performed to systematically determine which AAP residues were important for conferring regulation. Changing many of the most highly conserved residues (Asp-12, Tyr-13, Lys-14, and Trp-19) abolished regulatory function. The minimal functional domain of the AAP was determined by positioning AAP sequences internally within a large polypeptide. Pulse-chase analyses revealed that residues 9–20 of the AAP composed the minimal domain that was sufficient to confer regulatory function. An extensive analysis of predicted fungal AAPs revealed that the minimal functional domain of the N. crassa AAP corresponded closely to the region that was most highly conserved among the fungi. We also observed that the tripeptide RGD could function similarly to arginine in triggering AAP-mediated ribosome stalling. These studies provide a better understanding of the elements required for a nascent peptide and a small regulatory molecule to control translational processes. The 5′ regions of eukaryotic mRNAs often contain upstream open reading frames (uORFs). The Neurospora crassa arg-2 uORF encodes the 24-residue arginine attenuator peptide (AAP). This regulatory uORF-encoded peptide, which is evolutionarily conserved in fungal transcripts specifying an arginine biosynthetic enzyme, functions as a nascent peptide within the ribosomal tunnel and negatively regulates gene expression. The nascent AAP causes ribosomes to stall at the uORF stop codon in response to arginine, thus, blocking ribosomes from reaching the ARG-2 initiation codon. Here scanning mutagenesis with alanine and proline was performed to systematically determine which AAP residues were important for conferring regulation. Changing many of the most highly conserved residues (Asp-12, Tyr-13, Lys-14, and Trp-19) abolished regulatory function. The minimal functional domain of the AAP was determined by positioning AAP sequences internally within a large polypeptide. Pulse-chase analyses revealed that residues 9–20 of the AAP composed the minimal domain that was sufficient to confer regulatory function. An extensive analysis of predicted fungal AAPs revealed that the minimal functional domain of the N. crassa AAP corresponded closely to the region that was most highly conserved among the fungi. We also observed that the tripeptide RGD could function similarly to arginine in triggering AAP-mediated ribosome stalling. These studies provide a better understanding of the elements required for a nascent peptide and a small regulatory molecule to control translational processes." @default.
- W2085803345 created "2016-06-24" @default.
- W2085803345 creator A5004454686 @default.
- W2085803345 creator A5046802293 @default.
- W2085803345 creator A5083058673 @default.
- W2085803345 date "2010-12-01" @default.
- W2085803345 modified "2023-10-06" @default.
- W2085803345 title "Sequence Requirements for Ribosome Stalling by the Arginine Attenuator Peptide" @default.
- W2085803345 cites W1540874598 @default.
- W2085803345 cites W1805898977 @default.
- W2085803345 cites W1865592912 @default.
- W2085803345 cites W1964606534 @default.
- W2085803345 cites W1989230236 @default.
- W2085803345 cites W2003301968 @default.
- W2085803345 cites W2009929537 @default.
- W2085803345 cites W2012051383 @default.
- W2085803345 cites W2017041567 @default.
- W2085803345 cites W2019014293 @default.
- W2085803345 cites W2027195993 @default.
- W2085803345 cites W2029220675 @default.
- W2085803345 cites W2029417262 @default.
- W2085803345 cites W2038305786 @default.
- W2085803345 cites W2043320796 @default.
- W2085803345 cites W2054908644 @default.
- W2085803345 cites W2056067932 @default.
- W2085803345 cites W2057913182 @default.
- W2085803345 cites W2058464545 @default.
- W2085803345 cites W2060390733 @default.
- W2085803345 cites W2061225259 @default.
- W2085803345 cites W2062745383 @default.
- W2085803345 cites W2063783857 @default.
- W2085803345 cites W2084523992 @default.
- W2085803345 cites W2088869344 @default.
- W2085803345 cites W2106420140 @default.
- W2085803345 cites W2113744760 @default.
- W2085803345 cites W2121497509 @default.
- W2085803345 cites W2127667224 @default.
- W2085803345 cites W2135360731 @default.
- W2085803345 cites W2138739344 @default.
- W2085803345 cites W2140913315 @default.
- W2085803345 cites W2141513556 @default.
- W2085803345 cites W2159602962 @default.
- W2085803345 cites W2163959161 @default.
- W2085803345 cites W2164571794 @default.
- W2085803345 cites W2169477739 @default.
- W2085803345 cites W4231266067 @default.
- W2085803345 doi "https://doi.org/10.1074/jbc.m110.164152" @default.
- W2085803345 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3003393" @default.
- W2085803345 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20884617" @default.
- W2085803345 hasPublicationYear "2010" @default.
- W2085803345 type Work @default.
- W2085803345 sameAs 2085803345 @default.
- W2085803345 citedByCount "26" @default.
- W2085803345 countsByYear W20858033452012 @default.
- W2085803345 countsByYear W20858033452013 @default.
- W2085803345 countsByYear W20858033452014 @default.
- W2085803345 countsByYear W20858033452016 @default.
- W2085803345 countsByYear W20858033452017 @default.
- W2085803345 countsByYear W20858033452018 @default.
- W2085803345 countsByYear W20858033452019 @default.
- W2085803345 countsByYear W20858033452020 @default.
- W2085803345 countsByYear W20858033452021 @default.
- W2085803345 crossrefType "journal-article" @default.
- W2085803345 hasAuthorship W2085803345A5004454686 @default.
- W2085803345 hasAuthorship W2085803345A5046802293 @default.
- W2085803345 hasAuthorship W2085803345A5083058673 @default.
- W2085803345 hasBestOaLocation W20858033451 @default.
- W2085803345 hasConcept C104317684 @default.
- W2085803345 hasConcept C105580179 @default.
- W2085803345 hasConcept C143065580 @default.
- W2085803345 hasConcept C149364088 @default.
- W2085803345 hasConcept C167625842 @default.
- W2085803345 hasConcept C176990463 @default.
- W2085803345 hasConcept C182325514 @default.
- W2085803345 hasConcept C2776739539 @default.
- W2085803345 hasConcept C4718897 @default.
- W2085803345 hasConcept C47289529 @default.
- W2085803345 hasConcept C54355233 @default.
- W2085803345 hasConcept C55493867 @default.
- W2085803345 hasConcept C67705224 @default.
- W2085803345 hasConcept C86803240 @default.
- W2085803345 hasConcept C88478588 @default.
- W2085803345 hasConcept C95444343 @default.
- W2085803345 hasConceptScore W2085803345C104317684 @default.
- W2085803345 hasConceptScore W2085803345C105580179 @default.
- W2085803345 hasConceptScore W2085803345C143065580 @default.
- W2085803345 hasConceptScore W2085803345C149364088 @default.
- W2085803345 hasConceptScore W2085803345C167625842 @default.
- W2085803345 hasConceptScore W2085803345C176990463 @default.
- W2085803345 hasConceptScore W2085803345C182325514 @default.
- W2085803345 hasConceptScore W2085803345C2776739539 @default.
- W2085803345 hasConceptScore W2085803345C4718897 @default.
- W2085803345 hasConceptScore W2085803345C47289529 @default.
- W2085803345 hasConceptScore W2085803345C54355233 @default.
- W2085803345 hasConceptScore W2085803345C55493867 @default.
- W2085803345 hasConceptScore W2085803345C67705224 @default.
- W2085803345 hasConceptScore W2085803345C86803240 @default.
- W2085803345 hasConceptScore W2085803345C88478588 @default.