Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085836245> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2085836245 endingPage "222" @default.
- W2085836245 startingPage "199" @default.
- W2085836245 abstract "The force and torque on a particle that translates, rotates, or is held stationary in an incident flow within a channel with parallel-sided walls, are considered in the limit of Stokes flow. Assuming that the particle has an axisymmetric shape with axis perpendicular to the channel walls, the problem is formulated in terms of a boundary integral equation that is capable of describing arbitrary three-dimensional Stokes flow in an axisymmetric domain. The method involves: ( a ) representing the flow in terms of a single-layer potential that is defined over the physical boundaries of the flow as well as other external surfaces, ( b ) decomposing the polar cylindrical components of the velocity, boundary surface force, and single-layer potential in complex Fourier series, and ( c ) collecting same-order Fourier coefficients to obtain a system of one-dimensional Fredholm integral equations of the first kind for the coefficients of the surface force over the traces of the natural boundaries of the flow in an azimuthal plane. In the particular case where the polar cylindrical components of the boundary velocity exhibit a first harmonic dependence on the azimuthal angle, we obtain a reduced system of three real integral equations. A numerical method of solution that is based on a standard boundary element-collocation procedure is developed and tested. For channel flow, the effect of domain truncation on the nature of the far flow is investigated with reference to plane Hagen–Poiseuille flow past a cylindrical post. Numerical results are presented for the force and torque exerted on a family of oblate spheroids located above a single plane wall or within a parallel-sided channel. The effect of particle shape on the structure of the flow is illustrated, and some novel features of the motion are discussed. The numerical computations reveal the range of accuracy of previous asymptotic solutions for small or tightly fitting spherical particles." @default.
- W2085836245 created "2016-06-24" @default.
- W2085836245 creator A5024029502 @default.
- W2085836245 date "1994-02-25" @default.
- W2085836245 modified "2023-10-02" @default.
- W2085836245 title "The motion of particles in the Hele-Shaw cell" @default.
- W2085836245 cites W1969287097 @default.
- W2085836245 cites W2027348461 @default.
- W2085836245 cites W3023633374 @default.
- W2085836245 cites W4252226106 @default.
- W2085836245 doi "https://doi.org/10.1017/s0022112094000315" @default.
- W2085836245 hasPublicationYear "1994" @default.
- W2085836245 type Work @default.
- W2085836245 sameAs 2085836245 @default.
- W2085836245 citedByCount "24" @default.
- W2085836245 countsByYear W20858362452014 @default.
- W2085836245 countsByYear W20858362452015 @default.
- W2085836245 countsByYear W20858362452016 @default.
- W2085836245 countsByYear W20858362452018 @default.
- W2085836245 countsByYear W20858362452020 @default.
- W2085836245 countsByYear W20858362452023 @default.
- W2085836245 crossrefType "journal-article" @default.
- W2085836245 hasAuthorship W2085836245A5024029502 @default.
- W2085836245 hasConcept C121332964 @default.
- W2085836245 hasConcept C131043120 @default.
- W2085836245 hasConcept C134306372 @default.
- W2085836245 hasConcept C175336444 @default.
- W2085836245 hasConcept C180925781 @default.
- W2085836245 hasConcept C19191322 @default.
- W2085836245 hasConcept C207864730 @default.
- W2085836245 hasConcept C27016315 @default.
- W2085836245 hasConcept C33923547 @default.
- W2085836245 hasConcept C38349280 @default.
- W2085836245 hasConcept C45502583 @default.
- W2085836245 hasConcept C4809387 @default.
- W2085836245 hasConcept C57879066 @default.
- W2085836245 hasConcept C74650414 @default.
- W2085836245 hasConcept C76563973 @default.
- W2085836245 hasConcept C89285879 @default.
- W2085836245 hasConceptScore W2085836245C121332964 @default.
- W2085836245 hasConceptScore W2085836245C131043120 @default.
- W2085836245 hasConceptScore W2085836245C134306372 @default.
- W2085836245 hasConceptScore W2085836245C175336444 @default.
- W2085836245 hasConceptScore W2085836245C180925781 @default.
- W2085836245 hasConceptScore W2085836245C19191322 @default.
- W2085836245 hasConceptScore W2085836245C207864730 @default.
- W2085836245 hasConceptScore W2085836245C27016315 @default.
- W2085836245 hasConceptScore W2085836245C33923547 @default.
- W2085836245 hasConceptScore W2085836245C38349280 @default.
- W2085836245 hasConceptScore W2085836245C45502583 @default.
- W2085836245 hasConceptScore W2085836245C4809387 @default.
- W2085836245 hasConceptScore W2085836245C57879066 @default.
- W2085836245 hasConceptScore W2085836245C74650414 @default.
- W2085836245 hasConceptScore W2085836245C76563973 @default.
- W2085836245 hasConceptScore W2085836245C89285879 @default.
- W2085836245 hasLocation W20858362451 @default.
- W2085836245 hasOpenAccess W2085836245 @default.
- W2085836245 hasPrimaryLocation W20858362451 @default.
- W2085836245 hasRelatedWork W1507361349 @default.
- W2085836245 hasRelatedWork W2002001639 @default.
- W2085836245 hasRelatedWork W2052213321 @default.
- W2085836245 hasRelatedWork W2085836245 @default.
- W2085836245 hasRelatedWork W2990077249 @default.
- W2085836245 hasRelatedWork W2993203670 @default.
- W2085836245 hasRelatedWork W3020976541 @default.
- W2085836245 hasRelatedWork W3138565910 @default.
- W2085836245 hasRelatedWork W3198819517 @default.
- W2085836245 hasRelatedWork W4378745211 @default.
- W2085836245 hasVolume "261" @default.
- W2085836245 isParatext "false" @default.
- W2085836245 isRetracted "false" @default.
- W2085836245 magId "2085836245" @default.
- W2085836245 workType "article" @default.