Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085874803> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2085874803 endingPage "285" @default.
- W2085874803 startingPage "285" @default.
- W2085874803 abstract "Due to the lack of remote monitoring capabilities, combat medics cannot currently distinguish a wounded and bleeding soldier from a soldier who is engaged in combat unless they have physical access to them. We have previously shown that traditionally measured vital signs may not provide the specificity required to distinguish between a bleeding or physically active soldier, but a measure of volume status (e.g., pulse pressure (PP)), may be able to achieve this purpose. PURPOSE: To assess whether a machine-learning algorithm programmed within a wearable, non-invasive armband can track changes in PP and therefore distinguish between the conditions of central hypovolemia and exercise. METHODS: Twenty five human subjects underwent progressive central hypovolemia via lower body negative pressure (LBNP); 8 of these subjects also participated in a supine cycle exercise protocol (≥5 weeks later). Exercise workloads were determined by matching heart rate (HR) responses at each LBNP level. HR (via ECG) and arterial blood pressure (via Finometer®) were measured continuously. Subjects wore a SenseWear® Pro2 Armband that measured heat flux, HR, skin temperature, galvanic skin response, and 3-axis acceleration. These measurements were used to develop a machine-learning algorithm to predict changes in PP as an index of central blood volume under both conditions; these predictions were retrospectively compared against actual PP values obtained from the Finometer®. An additional model was created to determine if the accuracy, sensitivity, and specificity of unknown data points could be correctly classified into these two conditions (N = 8). RESULTS: Predicted versus actual PP values were highly correlated for both LBNP (r = 0.84; n = 25) and exercise (r = 0.86; n = 8). The machine learning algorithm was able to distinguish between LBNP and exercise with high accuracy (94%), sensitivity (95%), and specificity (92%). CONCLUSIONS: These results demonstrate that a wearable armband with a machine-learning algorithm was able to reliably track changes in PP during both central hypovolemia and exercise. This device could provide remote triage capabilities for future battlefield use." @default.
- W2085874803 created "2016-06-24" @default.
- W2085874803 creator A5006116583 @default.
- W2085874803 creator A5012591267 @default.
- W2085874803 creator A5045618287 @default.
- W2085874803 creator A5082192580 @default.
- W2085874803 creator A5089261354 @default.
- W2085874803 creator A5090041805 @default.
- W2085874803 date "2010-05-01" @default.
- W2085874803 modified "2023-09-25" @default.
- W2085874803 title "Bleeding Or Active? Validation Of A Machine-learning Algorithm For Remote Determination Of Blood Volume Status" @default.
- W2085874803 doi "https://doi.org/10.1249/01.mss.0000384393.91435.e6" @default.
- W2085874803 hasPublicationYear "2010" @default.
- W2085874803 type Work @default.
- W2085874803 sameAs 2085874803 @default.
- W2085874803 citedByCount "0" @default.
- W2085874803 crossrefType "journal-article" @default.
- W2085874803 hasAuthorship W2085874803A5006116583 @default.
- W2085874803 hasAuthorship W2085874803A5012591267 @default.
- W2085874803 hasAuthorship W2085874803A5045618287 @default.
- W2085874803 hasAuthorship W2085874803A5082192580 @default.
- W2085874803 hasAuthorship W2085874803A5089261354 @default.
- W2085874803 hasAuthorship W2085874803A5090041805 @default.
- W2085874803 hasBestOaLocation W20858748031 @default.
- W2085874803 hasConcept C125567185 @default.
- W2085874803 hasConcept C126322002 @default.
- W2085874803 hasConcept C154945302 @default.
- W2085874803 hasConcept C164705383 @default.
- W2085874803 hasConcept C2776890885 @default.
- W2085874803 hasConcept C2777953023 @default.
- W2085874803 hasConcept C2781309813 @default.
- W2085874803 hasConcept C37557685 @default.
- W2085874803 hasConcept C41008148 @default.
- W2085874803 hasConcept C42219234 @default.
- W2085874803 hasConcept C71924100 @default.
- W2085874803 hasConcept C84393581 @default.
- W2085874803 hasConceptScore W2085874803C125567185 @default.
- W2085874803 hasConceptScore W2085874803C126322002 @default.
- W2085874803 hasConceptScore W2085874803C154945302 @default.
- W2085874803 hasConceptScore W2085874803C164705383 @default.
- W2085874803 hasConceptScore W2085874803C2776890885 @default.
- W2085874803 hasConceptScore W2085874803C2777953023 @default.
- W2085874803 hasConceptScore W2085874803C2781309813 @default.
- W2085874803 hasConceptScore W2085874803C37557685 @default.
- W2085874803 hasConceptScore W2085874803C41008148 @default.
- W2085874803 hasConceptScore W2085874803C42219234 @default.
- W2085874803 hasConceptScore W2085874803C71924100 @default.
- W2085874803 hasConceptScore W2085874803C84393581 @default.
- W2085874803 hasIssue "5" @default.
- W2085874803 hasLocation W20858748031 @default.
- W2085874803 hasLocation W20858748032 @default.
- W2085874803 hasOpenAccess W2085874803 @default.
- W2085874803 hasPrimaryLocation W20858748031 @default.
- W2085874803 hasRelatedWork W2000549723 @default.
- W2085874803 hasRelatedWork W2033735809 @default.
- W2085874803 hasRelatedWork W2087894998 @default.
- W2085874803 hasRelatedWork W2119698783 @default.
- W2085874803 hasRelatedWork W2152765651 @default.
- W2085874803 hasRelatedWork W2280287926 @default.
- W2085874803 hasRelatedWork W2414985709 @default.
- W2085874803 hasRelatedWork W2467709100 @default.
- W2085874803 hasRelatedWork W2765736107 @default.
- W2085874803 hasRelatedWork W73303660 @default.
- W2085874803 hasVolume "42" @default.
- W2085874803 isParatext "false" @default.
- W2085874803 isRetracted "false" @default.
- W2085874803 magId "2085874803" @default.
- W2085874803 workType "article" @default.