Matches in SemOpenAlex for { <https://semopenalex.org/work/W2085909714> ?p ?o ?g. }
- W2085909714 endingPage "422" @default.
- W2085909714 startingPage "416" @default.
- W2085909714 abstract "White matter hyperintensities (WMH) are the focus of intensive research and have been linked to cognitive impairment and depression in the elderly. Cumbersome manual outlining procedures make research on WMH labour intensive and prone to subjective bias. This study compares fully automated supervised detection methods that learn to identify WMH from manual examples against unsupervised approaches on the combination of FLAIR and T1 weighted images. Data were collected from ten subjects with mild cognitive impairment and another set of ten individuals who fulfilled diagnostic criteria for dementia. Data were split into balanced groups to create a training set used to optimize the different methods. Manual outlining served as gold standard to evaluate performance of the automated methods that identified each voxel either as intact or as part of a WMH. Otsu's approach for multiple thresholds which is based only on voxel intensities of the FLAIR image produced a high number of false positives at grey matter boundaries. Performance on an independent test set was similarly disappointing when simply applying a threshold to the FLAIR that was found from training data. Among the supervised methods, precision–recall curves of support vector machines (SVM) indicated advantages over the performance achieved by K-nearest-neighbor classifiers (KNN). The curves indicated a clear benefit from optimizing the threshold of the SVM decision value and the voting rule of the KNN. Best performance was reached by selecting training voxels according to their distance to the lesion boundary and repeated training after replacing the feature vectors from those voxels that did not form support vectors of the SVM. The study demonstrates advantages of SVM for the problem of detecting WMH at least for studies that include only FLAIR and T1 weighted images. Various optimization strategies are discussed and compared against each other." @default.
- W2085909714 created "2016-06-24" @default.
- W2085909714 creator A5007738782 @default.
- W2085909714 creator A5011494296 @default.
- W2085909714 creator A5012436496 @default.
- W2085909714 creator A5021920622 @default.
- W2085909714 creator A5045981348 @default.
- W2085909714 creator A5059185664 @default.
- W2085909714 creator A5059932397 @default.
- W2085909714 creator A5074268098 @default.
- W2085909714 creator A5076944138 @default.
- W2085909714 creator A5082263464 @default.
- W2085909714 date "2011-07-01" @default.
- W2085909714 modified "2023-10-18" @default.
- W2085909714 title "A comparison of different automated methods for the detection of white matter lesions in MRI data" @default.
- W2085909714 cites W1529598366 @default.
- W2085909714 cites W1985912112 @default.
- W2085909714 cites W1999327911 @default.
- W2085909714 cites W2003191738 @default.
- W2085909714 cites W2006742792 @default.
- W2085909714 cites W2034274969 @default.
- W2085909714 cites W2045627215 @default.
- W2085909714 cites W2058046532 @default.
- W2085909714 cites W2061699647 @default.
- W2085909714 cites W2065069092 @default.
- W2085909714 cites W2078284967 @default.
- W2085909714 cites W2084456675 @default.
- W2085909714 cites W2085829822 @default.
- W2085909714 cites W2105202736 @default.
- W2085909714 cites W2105481399 @default.
- W2085909714 cites W2108995755 @default.
- W2085909714 cites W2113870592 @default.
- W2085909714 cites W2131943911 @default.
- W2085909714 cites W2132513126 @default.
- W2085909714 cites W2136857108 @default.
- W2085909714 cites W2146712216 @default.
- W2085909714 cites W2152723280 @default.
- W2085909714 cites W2171831801 @default.
- W2085909714 cites W2173405 @default.
- W2085909714 cites W4230920194 @default.
- W2085909714 doi "https://doi.org/10.1016/j.neuroimage.2011.04.053" @default.
- W2085909714 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21569857" @default.
- W2085909714 hasPublicationYear "2011" @default.
- W2085909714 type Work @default.
- W2085909714 sameAs 2085909714 @default.
- W2085909714 citedByCount "50" @default.
- W2085909714 countsByYear W20859097142012 @default.
- W2085909714 countsByYear W20859097142013 @default.
- W2085909714 countsByYear W20859097142014 @default.
- W2085909714 countsByYear W20859097142015 @default.
- W2085909714 countsByYear W20859097142016 @default.
- W2085909714 countsByYear W20859097142017 @default.
- W2085909714 countsByYear W20859097142018 @default.
- W2085909714 countsByYear W20859097142020 @default.
- W2085909714 countsByYear W20859097142021 @default.
- W2085909714 countsByYear W20859097142022 @default.
- W2085909714 crossrefType "journal-article" @default.
- W2085909714 hasAuthorship W2085909714A5007738782 @default.
- W2085909714 hasAuthorship W2085909714A5011494296 @default.
- W2085909714 hasAuthorship W2085909714A5012436496 @default.
- W2085909714 hasAuthorship W2085909714A5021920622 @default.
- W2085909714 hasAuthorship W2085909714A5045981348 @default.
- W2085909714 hasAuthorship W2085909714A5059185664 @default.
- W2085909714 hasAuthorship W2085909714A5059932397 @default.
- W2085909714 hasAuthorship W2085909714A5074268098 @default.
- W2085909714 hasAuthorship W2085909714A5076944138 @default.
- W2085909714 hasAuthorship W2085909714A5082263464 @default.
- W2085909714 hasConcept C12267149 @default.
- W2085909714 hasConcept C126838900 @default.
- W2085909714 hasConcept C143409427 @default.
- W2085909714 hasConcept C146638467 @default.
- W2085909714 hasConcept C153180895 @default.
- W2085909714 hasConcept C154945302 @default.
- W2085909714 hasConcept C177264268 @default.
- W2085909714 hasConcept C199360897 @default.
- W2085909714 hasConcept C41008148 @default.
- W2085909714 hasConcept C42023084 @default.
- W2085909714 hasConcept C54170458 @default.
- W2085909714 hasConcept C58489278 @default.
- W2085909714 hasConcept C64869954 @default.
- W2085909714 hasConcept C71924100 @default.
- W2085909714 hasConceptScore W2085909714C12267149 @default.
- W2085909714 hasConceptScore W2085909714C126838900 @default.
- W2085909714 hasConceptScore W2085909714C143409427 @default.
- W2085909714 hasConceptScore W2085909714C146638467 @default.
- W2085909714 hasConceptScore W2085909714C153180895 @default.
- W2085909714 hasConceptScore W2085909714C154945302 @default.
- W2085909714 hasConceptScore W2085909714C177264268 @default.
- W2085909714 hasConceptScore W2085909714C199360897 @default.
- W2085909714 hasConceptScore W2085909714C41008148 @default.
- W2085909714 hasConceptScore W2085909714C42023084 @default.
- W2085909714 hasConceptScore W2085909714C54170458 @default.
- W2085909714 hasConceptScore W2085909714C58489278 @default.
- W2085909714 hasConceptScore W2085909714C64869954 @default.
- W2085909714 hasConceptScore W2085909714C71924100 @default.
- W2085909714 hasFunder F4320320879 @default.
- W2085909714 hasFunder F4320321114 @default.
- W2085909714 hasIssue "2" @default.