Matches in SemOpenAlex for { <https://semopenalex.org/work/W2086097271> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2086097271 abstract "Abstract Reservoir simulation models are constructed from sparse well data, dense seismic data, and using geologic concepts to constrain stratigraphy and property variations. Because of the sparseness of well data, stochastically inverted seismic data offer important constraints on reservoir geometry and average properties. Although seismic data are densely distributed, they are uninformative about meter-scale features. Conversely, well data reveal fine-scale features but cannot specify intrawell geometry. To build a consistent model, conceptual stacking and facies models must be constrained by well and seismic data. Stochastic ensembles of geomodels are used to capture variability associated with seismic downscaling, lateral variability and conceptual models. The resulting geomodels must be gridded for flow simulation using methods that describe stratal architecture flexibly and efficiently. In this paper, geomodels integrate stochastic seismic inversion results (for means and variances of packages of meter-scale beds), geologic modeling (for a framework and priors), rock physics (to relate seismic to flow properties), and geostatistics (for spatially correlated variability). These elements are combined in a Bayesian framework. The proposed workflow produces models with plausible bedding geometries, where each geomodel agrees with seismic data to the level consistent with the signal-to-noise ratio of the inversion. An ensemble of subseismic models estimates the means and variances of properties throughout the flow simulation grid. Grid geometries with possible pinchouts can be simulated using auxiliary variables in a Markov Chain Monte Carlo (MCMC) method. Efficient implementations of this method require a posterior covariance matrix for layer thicknesses. Under assumptions that are not too restrictive, the inverse of the posterior covariance matrix can be approximated as a Toeplitz matrix, which makes the MCMC calculations efficient. The proposed method is validated and examined using two-layer examples. Convergence is demonstrated for a synthetic threedimensional, 10,000 trace, 10 layer cornerpoint model. Performance is acceptable (305 s on a 2 GHz Pentium-M processor). The Bayesian framework introduces plausible subseismic features into flow models, whilst avoiding overconstraining to seismic data, well data, or the conceptual geologic model. The methods outlined in this paper for honoring probabilistic constraints on total thickness are general, and need not be confined to thickness data obtained from seismic inversion: any spatially dense estimates of total thickness and its variance can be used, or the truncated geostatistical model could also be used without any dense constraints." @default.
- W2086097271 created "2016-06-24" @default.
- W2086097271 creator A5011034449 @default.
- W2086097271 creator A5021104523 @default.
- W2086097271 creator A5044361885 @default.
- W2086097271 creator A5061402605 @default.
- W2086097271 date "2006-09-24" @default.
- W2086097271 modified "2023-10-07" @default.
- W2086097271 title "Consistent Downscaling of Seismic Inversions to Cornerpoint Flow Models" @default.
- W2086097271 cites W1969466749 @default.
- W2086097271 cites W2024756269 @default.
- W2086097271 cites W2052273345 @default.
- W2086097271 cites W2057854579 @default.
- W2086097271 cites W2064619225 @default.
- W2086097271 cites W2115237061 @default.
- W2086097271 cites W2136872499 @default.
- W2086097271 cites W2165558283 @default.
- W2086097271 cites W2167179339 @default.
- W2086097271 cites W4232383088 @default.
- W2086097271 cites W4256333417 @default.
- W2086097271 doi "https://doi.org/10.2118/103268-ms" @default.
- W2086097271 hasPublicationYear "2006" @default.
- W2086097271 type Work @default.
- W2086097271 sameAs 2086097271 @default.
- W2086097271 citedByCount "0" @default.
- W2086097271 crossrefType "proceedings-article" @default.
- W2086097271 hasAuthorship W2086097271A5011034449 @default.
- W2086097271 hasAuthorship W2086097271A5021104523 @default.
- W2086097271 hasAuthorship W2086097271A5044361885 @default.
- W2086097271 hasAuthorship W2086097271A5061402605 @default.
- W2086097271 hasConcept C107673813 @default.
- W2086097271 hasConcept C111350023 @default.
- W2086097271 hasConcept C111368507 @default.
- W2086097271 hasConcept C11413529 @default.
- W2086097271 hasConcept C121332964 @default.
- W2086097271 hasConcept C127313418 @default.
- W2086097271 hasConcept C132651083 @default.
- W2086097271 hasConcept C13280743 @default.
- W2086097271 hasConcept C153294291 @default.
- W2086097271 hasConcept C154945302 @default.
- W2086097271 hasConcept C187691185 @default.
- W2086097271 hasConcept C24552861 @default.
- W2086097271 hasConcept C39267094 @default.
- W2086097271 hasConcept C41008148 @default.
- W2086097271 hasConcept C41156917 @default.
- W2086097271 hasConcept C64370902 @default.
- W2086097271 hasConceptScore W2086097271C107673813 @default.
- W2086097271 hasConceptScore W2086097271C111350023 @default.
- W2086097271 hasConceptScore W2086097271C111368507 @default.
- W2086097271 hasConceptScore W2086097271C11413529 @default.
- W2086097271 hasConceptScore W2086097271C121332964 @default.
- W2086097271 hasConceptScore W2086097271C127313418 @default.
- W2086097271 hasConceptScore W2086097271C132651083 @default.
- W2086097271 hasConceptScore W2086097271C13280743 @default.
- W2086097271 hasConceptScore W2086097271C153294291 @default.
- W2086097271 hasConceptScore W2086097271C154945302 @default.
- W2086097271 hasConceptScore W2086097271C187691185 @default.
- W2086097271 hasConceptScore W2086097271C24552861 @default.
- W2086097271 hasConceptScore W2086097271C39267094 @default.
- W2086097271 hasConceptScore W2086097271C41008148 @default.
- W2086097271 hasConceptScore W2086097271C41156917 @default.
- W2086097271 hasConceptScore W2086097271C64370902 @default.
- W2086097271 hasLocation W20860972711 @default.
- W2086097271 hasOpenAccess W2086097271 @default.
- W2086097271 hasPrimaryLocation W20860972711 @default.
- W2086097271 hasRelatedWork W1941037635 @default.
- W2086097271 hasRelatedWork W1968944986 @default.
- W2086097271 hasRelatedWork W2013903088 @default.
- W2086097271 hasRelatedWork W2054452016 @default.
- W2086097271 hasRelatedWork W2061743691 @default.
- W2086097271 hasRelatedWork W2068471883 @default.
- W2086097271 hasRelatedWork W2086097271 @default.
- W2086097271 hasRelatedWork W2333845405 @default.
- W2086097271 hasRelatedWork W2356652946 @default.
- W2086097271 hasRelatedWork W3086697448 @default.
- W2086097271 isParatext "false" @default.
- W2086097271 isRetracted "false" @default.
- W2086097271 magId "2086097271" @default.
- W2086097271 workType "article" @default.