Matches in SemOpenAlex for { <https://semopenalex.org/work/W2086136644> ?p ?o ?g. }
- W2086136644 endingPage "612" @default.
- W2086136644 startingPage "601" @default.
- W2086136644 abstract "In standard blind source separation, one tries to extract unknown source signals from their instantaneous linear mixtures by using a minimum of a priori information. We have recently shown that certain nonlinear extensions of principal component type neural algorithms can be successfully applied to this problem. In this paper, we show that a nonlinear PCA criterion can be minimized using least-squares approaches, leading to computationally efficient and fast converging algorithms. Several versions of this approach are developed and studied, some of which can be regarded as neural learning algorithms. A connection to the nonlinear PCA subspace rule is also shown. Experimental results are given, showing that the least-squares methods usually converge clearly faster than stochastic gradient algorithms in blind separation problems." @default.
- W2086136644 created "2016-06-24" @default.
- W2086136644 creator A5038053770 @default.
- W2086136644 creator A5085358291 @default.
- W2086136644 date "1997-10-01" @default.
- W2086136644 modified "2023-09-25" @default.
- W2086136644 title "Least-Squares Methods for Blind Source Separation Based on Nonlinear PCA" @default.
- W2086136644 cites W1976045444 @default.
- W2086136644 cites W1977067929 @default.
- W2086136644 cites W1984121966 @default.
- W2086136644 cites W1990007244 @default.
- W2086136644 cites W1996355918 @default.
- W2086136644 cites W2019502123 @default.
- W2086136644 cites W2023327020 @default.
- W2086136644 cites W2050597764 @default.
- W2086136644 cites W2052632856 @default.
- W2086136644 cites W2074033194 @default.
- W2086136644 cites W2078626246 @default.
- W2086136644 cites W2094265461 @default.
- W2086136644 cites W2096789154 @default.
- W2086136644 cites W2099741732 @default.
- W2086136644 cites W2108384452 @default.
- W2086136644 cites W2112575974 @default.
- W2086136644 cites W2119501108 @default.
- W2086136644 cites W2133515443 @default.
- W2086136644 cites W2143132653 @default.
- W2086136644 cites W2168287525 @default.
- W2086136644 cites W2170108436 @default.
- W2086136644 cites W2432567885 @default.
- W2086136644 doi "https://doi.org/10.1142/s0129065797000549" @default.
- W2086136644 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10065838" @default.
- W2086136644 hasPublicationYear "1997" @default.
- W2086136644 type Work @default.
- W2086136644 sameAs 2086136644 @default.
- W2086136644 citedByCount "42" @default.
- W2086136644 countsByYear W20861366442012 @default.
- W2086136644 countsByYear W20861366442015 @default.
- W2086136644 countsByYear W20861366442016 @default.
- W2086136644 countsByYear W20861366442018 @default.
- W2086136644 countsByYear W20861366442019 @default.
- W2086136644 countsByYear W20861366442020 @default.
- W2086136644 countsByYear W20861366442022 @default.
- W2086136644 crossrefType "journal-article" @default.
- W2086136644 hasAuthorship W2086136644A5038053770 @default.
- W2086136644 hasAuthorship W2086136644A5085358291 @default.
- W2086136644 hasConcept C105795698 @default.
- W2086136644 hasConcept C111472728 @default.
- W2086136644 hasConcept C11413529 @default.
- W2086136644 hasConcept C120317606 @default.
- W2086136644 hasConcept C121332964 @default.
- W2086136644 hasConcept C126255220 @default.
- W2086136644 hasConcept C127162648 @default.
- W2086136644 hasConcept C13355873 @default.
- W2086136644 hasConcept C138885662 @default.
- W2086136644 hasConcept C153180895 @default.
- W2086136644 hasConcept C154945302 @default.
- W2086136644 hasConcept C158622935 @default.
- W2086136644 hasConcept C167928553 @default.
- W2086136644 hasConcept C185429906 @default.
- W2086136644 hasConcept C2524010 @default.
- W2086136644 hasConcept C27438332 @default.
- W2086136644 hasConcept C2776864781 @default.
- W2086136644 hasConcept C31258907 @default.
- W2086136644 hasConcept C32834561 @default.
- W2086136644 hasConcept C33923547 @default.
- W2086136644 hasConcept C41008148 @default.
- W2086136644 hasConcept C45923927 @default.
- W2086136644 hasConcept C62520636 @default.
- W2086136644 hasConcept C75553542 @default.
- W2086136644 hasConcept C9936470 @default.
- W2086136644 hasConceptScore W2086136644C105795698 @default.
- W2086136644 hasConceptScore W2086136644C111472728 @default.
- W2086136644 hasConceptScore W2086136644C11413529 @default.
- W2086136644 hasConceptScore W2086136644C120317606 @default.
- W2086136644 hasConceptScore W2086136644C121332964 @default.
- W2086136644 hasConceptScore W2086136644C126255220 @default.
- W2086136644 hasConceptScore W2086136644C127162648 @default.
- W2086136644 hasConceptScore W2086136644C13355873 @default.
- W2086136644 hasConceptScore W2086136644C138885662 @default.
- W2086136644 hasConceptScore W2086136644C153180895 @default.
- W2086136644 hasConceptScore W2086136644C154945302 @default.
- W2086136644 hasConceptScore W2086136644C158622935 @default.
- W2086136644 hasConceptScore W2086136644C167928553 @default.
- W2086136644 hasConceptScore W2086136644C185429906 @default.
- W2086136644 hasConceptScore W2086136644C2524010 @default.
- W2086136644 hasConceptScore W2086136644C27438332 @default.
- W2086136644 hasConceptScore W2086136644C2776864781 @default.
- W2086136644 hasConceptScore W2086136644C31258907 @default.
- W2086136644 hasConceptScore W2086136644C32834561 @default.
- W2086136644 hasConceptScore W2086136644C33923547 @default.
- W2086136644 hasConceptScore W2086136644C41008148 @default.
- W2086136644 hasConceptScore W2086136644C45923927 @default.
- W2086136644 hasConceptScore W2086136644C62520636 @default.
- W2086136644 hasConceptScore W2086136644C75553542 @default.
- W2086136644 hasConceptScore W2086136644C9936470 @default.
- W2086136644 hasIssue "05n06" @default.
- W2086136644 hasLocation W20861366441 @default.
- W2086136644 hasLocation W20861366442 @default.