Matches in SemOpenAlex for { <https://semopenalex.org/work/W2086276924> ?p ?o ?g. }
- W2086276924 abstract "Abstract Background Although many nerve prostheses have been proposed in recent years, in the case of consistent loss of nervous tissue peripheral nerve injury is still a traumatic pathology that may impair patient's movements by interrupting his motor-sensory pathways. In the last few decades tissue engineering has opened the door to new approaches;: however most of them make use of rigid channel guides that may cause cell loss due to the lack of physiological local stresses exerted over the nervous tissue during patient's movement. Electrospinning technique makes it possible to spin microfiber and nanofiber flexible tubular scaffolds composed of a number of natural and synthetic components, showing high porosity and remarkable surface/volume ratio. Results In this study we used electrospun tubes made of biodegradable polymers (a blend of PLGA/PCL) to regenerate a 10-mm nerve gap in a rat sciatic nerve in vivo . Experimental groups comprise lesioned animals (control group) and lesioned animals subjected to guide conduits implantated at the severed nerve stumps, where the tubular scaffolds are filled with saline solution. Four months after surgery, sciatic nerves failed to reconnect the two stumps of transected nerves in the control animal group. In most of the treated animals the electrospun tubes induced nervous regeneration and functional reconnection of the two severed sciatic nerve tracts. Myelination and collagen IV deposition have been detected in concurrence with regenerated fibers. No significant inflammatory response has been found. Neural tracers revealed the re-establishment of functional neuronal connections and evoked potential results showed the reinnervation of the target muscles in the majority of the treated animals. Conclusion Corroborating previous works, this study indicates that electrospun tubes, with no additional biological coating or drug loading treatment, are promising scaffolds for functional nervous regeneration. They can be knitted in meshes and various frames depending on the cytoarchitecture of the tissue to be regenerated. The versatility of this technique gives room for further scaffold improvements, like tuning the mechanical properties of the tubular structure or providing biomimetic functionalization. Moreover, these guidance conduits can be loaded with various fillers like collagen, fibrin, or self-assembling peptide gels or loaded with neurotrophic factors and seeded with cells. Electrospun scaffolds can also be synthesized in different micro-architectures to regenerate lesions in other tissues like skin and bone." @default.
- W2086276924 created "2016-06-24" @default.
- W2086276924 creator A5013535943 @default.
- W2086276924 creator A5014458075 @default.
- W2086276924 creator A5020962668 @default.
- W2086276924 creator A5026666624 @default.
- W2086276924 creator A5061330585 @default.
- W2086276924 creator A5077683609 @default.
- W2086276924 creator A5082038549 @default.
- W2086276924 creator A5084433498 @default.
- W2086276924 date "2008-04-11" @default.
- W2086276924 modified "2023-10-07" @default.
- W2086276924 title "Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections" @default.
- W2086276924 cites W1968944127 @default.
- W2086276924 cites W1971969398 @default.
- W2086276924 cites W1975158306 @default.
- W2086276924 cites W1982665590 @default.
- W2086276924 cites W1983041174 @default.
- W2086276924 cites W1985546748 @default.
- W2086276924 cites W1986396861 @default.
- W2086276924 cites W1991236312 @default.
- W2086276924 cites W1995206046 @default.
- W2086276924 cites W1996353258 @default.
- W2086276924 cites W2002482035 @default.
- W2086276924 cites W2004128899 @default.
- W2086276924 cites W2006428372 @default.
- W2086276924 cites W2015382740 @default.
- W2086276924 cites W2019921949 @default.
- W2086276924 cites W2024643463 @default.
- W2086276924 cites W2026840150 @default.
- W2086276924 cites W2026963955 @default.
- W2086276924 cites W2028814484 @default.
- W2086276924 cites W2029890974 @default.
- W2086276924 cites W2034695173 @default.
- W2086276924 cites W2038236048 @default.
- W2086276924 cites W2038997019 @default.
- W2086276924 cites W2048903275 @default.
- W2086276924 cites W2049110630 @default.
- W2086276924 cites W2051588612 @default.
- W2086276924 cites W2054315557 @default.
- W2086276924 cites W2070977544 @default.
- W2086276924 cites W2074600461 @default.
- W2086276924 cites W2075226164 @default.
- W2086276924 cites W2081921531 @default.
- W2086276924 cites W2083419195 @default.
- W2086276924 cites W2085163136 @default.
- W2086276924 cites W2089747912 @default.
- W2086276924 cites W2093229003 @default.
- W2086276924 cites W2094810226 @default.
- W2086276924 cites W2105454620 @default.
- W2086276924 cites W2134321720 @default.
- W2086276924 cites W2142264194 @default.
- W2086276924 cites W2156229286 @default.
- W2086276924 cites W2160243634 @default.
- W2086276924 cites W2169343963 @default.
- W2086276924 cites W2172201406 @default.
- W2086276924 cites W2416973658 @default.
- W2086276924 cites W348347653 @default.
- W2086276924 cites W4238350097 @default.
- W2086276924 cites W4294715713 @default.
- W2086276924 doi "https://doi.org/10.1186/1472-6750-8-39" @default.
- W2086276924 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2358889" @default.
- W2086276924 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18405347" @default.
- W2086276924 hasPublicationYear "2008" @default.
- W2086276924 type Work @default.
- W2086276924 sameAs 2086276924 @default.
- W2086276924 citedByCount "282" @default.
- W2086276924 countsByYear W20862769242012 @default.
- W2086276924 countsByYear W20862769242013 @default.
- W2086276924 countsByYear W20862769242014 @default.
- W2086276924 countsByYear W20862769242015 @default.
- W2086276924 countsByYear W20862769242016 @default.
- W2086276924 countsByYear W20862769242017 @default.
- W2086276924 countsByYear W20862769242018 @default.
- W2086276924 countsByYear W20862769242019 @default.
- W2086276924 countsByYear W20862769242020 @default.
- W2086276924 countsByYear W20862769242021 @default.
- W2086276924 countsByYear W20862769242022 @default.
- W2086276924 countsByYear W20862769242023 @default.
- W2086276924 crossrefType "journal-article" @default.
- W2086276924 hasAuthorship W2086276924A5013535943 @default.
- W2086276924 hasAuthorship W2086276924A5014458075 @default.
- W2086276924 hasAuthorship W2086276924A5020962668 @default.
- W2086276924 hasAuthorship W2086276924A5026666624 @default.
- W2086276924 hasAuthorship W2086276924A5061330585 @default.
- W2086276924 hasAuthorship W2086276924A5077683609 @default.
- W2086276924 hasAuthorship W2086276924A5082038549 @default.
- W2086276924 hasAuthorship W2086276924A5084433498 @default.
- W2086276924 hasBestOaLocation W20862769241 @default.
- W2086276924 hasConcept C105702510 @default.
- W2086276924 hasConcept C136229726 @default.
- W2086276924 hasConcept C144796933 @default.
- W2086276924 hasConcept C159985019 @default.
- W2086276924 hasConcept C169760540 @default.
- W2086276924 hasConcept C171056886 @default.
- W2086276924 hasConcept C192562407 @default.
- W2086276924 hasConcept C2777921445 @default.
- W2086276924 hasConcept C2779649809 @default.
- W2086276924 hasConcept C2781149210 @default.
- W2086276924 hasConcept C521977710 @default.