Matches in SemOpenAlex for { <https://semopenalex.org/work/W2086284908> ?p ?o ?g. }
- W2086284908 endingPage "7519" @default.
- W2086284908 startingPage "7501" @default.
- W2086284908 abstract "Radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, so-called MRI-only RT, would remove the systematic registration error between MR and computed tomography (CT), and provide co-registered MRI for assessment of treatment response and adaptive RT. Electron densities, however, need to be assigned to the MRI images for dose calculation and patient setup based on digitally reconstructed radiographs (DRRs). Here, we investigate the geometric and dosimetric performance for a number of popular voxel-based methods to generate a so-called pseudo CT (pCT). Five patients receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation and (3) statistical regression. Each approach contained two methods. Approach 1 used bulk density assignment of MRI voxels into air, soft tissue and bone based on logical masks and the transverse relaxation time T2 of the bone. Approach 2 used similar bulk density assignments with Bayesian statistics including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT agreement with the pCT of each method was quantified and compared with the other methods geometrically and dosimetrically using both a number of reported metrics and introducing some novel metrics. The best geometrical agreement with CT was obtained with the statistical regression methods which performed significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI comparison. The mean dosimetric deviation for photons and protons compared to the CT was about 2% and highest in the gradient dose region of the brainstem. Both the threshold based method and the statistical regression methods showed the highest dosimetrical agreement.Generation of pCTs using statistical regression seems to be the most promising candidate for MRI-only RT of the brain. Further, the total amount of different tissues needs to be taken into account for dosimetric considerations regardless of their correct geometrical position." @default.
- W2086284908 created "2016-06-24" @default.
- W2086284908 creator A5014903081 @default.
- W2086284908 creator A5044224559 @default.
- W2086284908 creator A5047520245 @default.
- W2086284908 creator A5051511355 @default.
- W2086284908 creator A5064449323 @default.
- W2086284908 creator A5065387811 @default.
- W2086284908 date "2014-11-13" @default.
- W2086284908 modified "2023-10-12" @default.
- W2086284908 title "A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times" @default.
- W2086284908 cites W1968795335 @default.
- W2086284908 cites W1977661786 @default.
- W2086284908 cites W1978005652 @default.
- W2086284908 cites W1980076601 @default.
- W2086284908 cites W1980089740 @default.
- W2086284908 cites W1982095138 @default.
- W2086284908 cites W1984473052 @default.
- W2086284908 cites W1985180563 @default.
- W2086284908 cites W1987869189 @default.
- W2086284908 cites W2003059727 @default.
- W2086284908 cites W2005508273 @default.
- W2086284908 cites W2006162458 @default.
- W2086284908 cites W2007234908 @default.
- W2086284908 cites W2021177063 @default.
- W2086284908 cites W2021500657 @default.
- W2086284908 cites W2025172079 @default.
- W2086284908 cites W2035397698 @default.
- W2086284908 cites W2043626403 @default.
- W2086284908 cites W2045375756 @default.
- W2086284908 cites W2046701188 @default.
- W2086284908 cites W2048033696 @default.
- W2086284908 cites W2049633694 @default.
- W2086284908 cites W2058988618 @default.
- W2086284908 cites W2060706952 @default.
- W2086284908 cites W2071098381 @default.
- W2086284908 cites W2073401440 @default.
- W2086284908 cites W2074054457 @default.
- W2086284908 cites W2079053405 @default.
- W2086284908 cites W2081826725 @default.
- W2086284908 cites W2084986282 @default.
- W2086284908 cites W2090699663 @default.
- W2086284908 cites W2096305085 @default.
- W2086284908 cites W2118758783 @default.
- W2086284908 cites W2120857014 @default.
- W2086284908 cites W2124904604 @default.
- W2086284908 cites W2128124359 @default.
- W2086284908 cites W2129035178 @default.
- W2086284908 cites W2129656462 @default.
- W2086284908 cites W2130686832 @default.
- W2086284908 cites W2136573752 @default.
- W2086284908 cites W2137387807 @default.
- W2086284908 cites W2157025461 @default.
- W2086284908 cites W2162025915 @default.
- W2086284908 cites W2322670122 @default.
- W2086284908 cites W2613422090 @default.
- W2086284908 cites W2911964244 @default.
- W2086284908 cites W3102998284 @default.
- W2086284908 cites W4229591924 @default.
- W2086284908 doi "https://doi.org/10.1088/0031-9155/59/23/7501" @default.
- W2086284908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25393873" @default.
- W2086284908 hasPublicationYear "2014" @default.
- W2086284908 type Work @default.
- W2086284908 sameAs 2086284908 @default.
- W2086284908 citedByCount "84" @default.
- W2086284908 countsByYear W20862849082015 @default.
- W2086284908 countsByYear W20862849082016 @default.
- W2086284908 countsByYear W20862849082017 @default.
- W2086284908 countsByYear W20862849082018 @default.
- W2086284908 countsByYear W20862849082019 @default.
- W2086284908 countsByYear W20862849082020 @default.
- W2086284908 countsByYear W20862849082021 @default.
- W2086284908 countsByYear W20862849082022 @default.
- W2086284908 countsByYear W20862849082023 @default.
- W2086284908 crossrefType "journal-article" @default.
- W2086284908 hasAuthorship W2086284908A5014903081 @default.
- W2086284908 hasAuthorship W2086284908A5044224559 @default.
- W2086284908 hasAuthorship W2086284908A5047520245 @default.
- W2086284908 hasAuthorship W2086284908A5051511355 @default.
- W2086284908 hasAuthorship W2086284908A5064449323 @default.
- W2086284908 hasAuthorship W2086284908A5065387811 @default.
- W2086284908 hasConcept C126838900 @default.
- W2086284908 hasConcept C143409427 @default.
- W2086284908 hasConcept C154945302 @default.
- W2086284908 hasConcept C157787499 @default.
- W2086284908 hasConcept C173974348 @default.
- W2086284908 hasConcept C2989005 @default.
- W2086284908 hasConcept C41008148 @default.
- W2086284908 hasConcept C54170458 @default.
- W2086284908 hasConcept C71924100 @default.
- W2086284908 hasConceptScore W2086284908C126838900 @default.
- W2086284908 hasConceptScore W2086284908C143409427 @default.
- W2086284908 hasConceptScore W2086284908C154945302 @default.
- W2086284908 hasConceptScore W2086284908C157787499 @default.
- W2086284908 hasConceptScore W2086284908C173974348 @default.
- W2086284908 hasConceptScore W2086284908C2989005 @default.
- W2086284908 hasConceptScore W2086284908C41008148 @default.
- W2086284908 hasConceptScore W2086284908C54170458 @default.