Matches in SemOpenAlex for { <https://semopenalex.org/work/W2086381182> ?p ?o ?g. }
- W2086381182 endingPage "27" @default.
- W2086381182 startingPage "22" @default.
- W2086381182 abstract "Multiblock partial least squares (MB-PLS) method has been proposed for modeling the data set with large number of variables and for making the model more interpretable. In MB-PLS, the variables are split into several blocks containing different information, and the relative importance of the blocks is reflected by the super-weights of the MB-PLS model. In this paper, a weighted MB-PLS coupled with discrete wavelet transform (DWT) method is proposed for modeling of the near infrared (NIR) spectra. In the method, the spectra are decomposed into blocks by DWT, and the relative importance of the blocks is estimated by both the super-weights and the block-weights determined by the prediction error of the sub-models in cross validation. Therefore, a practical approach to separate the variables is provided for MB-PLS and the relative contribution of the variable blocks to the prediction can be modulated adaptively. To validate the performance of the method, two industrial NIR data sets of tobacco powder and fragment of tobacco lamina are investigated, respectively. The root-mean-square error of prediction (RMSEP), the residual predictive deviation (RPD), and the correlation coefficient (R) show that the weighted MB-PLS coupled with DWT gives a better predictive accuracy and interpretability compared with the ordinary PLS and MB-PLS methods." @default.
- W2086381182 created "2016-06-24" @default.
- W2086381182 creator A5010656224 @default.
- W2086381182 creator A5067779504 @default.
- W2086381182 creator A5080149697 @default.
- W2086381182 date "2010-01-01" @default.
- W2086381182 modified "2023-09-27" @default.
- W2086381182 title "Multiblock partial least squares regression based on wavelet transform for quantitative analysis of near infrared spectra" @default.
- W2086381182 cites W1965234853 @default.
- W2086381182 cites W1970540819 @default.
- W2086381182 cites W1973815969 @default.
- W2086381182 cites W1980033015 @default.
- W2086381182 cites W1980668403 @default.
- W2086381182 cites W1981831454 @default.
- W2086381182 cites W1982088190 @default.
- W2086381182 cites W1983878349 @default.
- W2086381182 cites W1997601403 @default.
- W2086381182 cites W1999737648 @default.
- W2086381182 cites W2002857564 @default.
- W2086381182 cites W2003997078 @default.
- W2086381182 cites W2004903444 @default.
- W2086381182 cites W2004904611 @default.
- W2086381182 cites W2006676204 @default.
- W2086381182 cites W2018338598 @default.
- W2086381182 cites W2021758772 @default.
- W2086381182 cites W2021892205 @default.
- W2086381182 cites W2022108380 @default.
- W2086381182 cites W2031032649 @default.
- W2086381182 cites W2036559450 @default.
- W2086381182 cites W2040019138 @default.
- W2086381182 cites W2050150264 @default.
- W2086381182 cites W2055817716 @default.
- W2086381182 cites W2059107091 @default.
- W2086381182 cites W2061862723 @default.
- W2086381182 cites W2071813447 @default.
- W2086381182 cites W2074628772 @default.
- W2086381182 cites W2079677565 @default.
- W2086381182 cites W2087795492 @default.
- W2086381182 cites W2101929746 @default.
- W2086381182 cites W2116988482 @default.
- W2086381182 cites W2118186775 @default.
- W2086381182 cites W2132984323 @default.
- W2086381182 cites W2133787701 @default.
- W2086381182 cites W2150544808 @default.
- W2086381182 cites W2159195751 @default.
- W2086381182 cites W4237663054 @default.
- W2086381182 cites W4256511286 @default.
- W2086381182 doi "https://doi.org/10.1016/j.chemolab.2009.09.006" @default.
- W2086381182 hasPublicationYear "2010" @default.
- W2086381182 type Work @default.
- W2086381182 sameAs 2086381182 @default.
- W2086381182 citedByCount "41" @default.
- W2086381182 countsByYear W20863811822012 @default.
- W2086381182 countsByYear W20863811822013 @default.
- W2086381182 countsByYear W20863811822014 @default.
- W2086381182 countsByYear W20863811822015 @default.
- W2086381182 countsByYear W20863811822016 @default.
- W2086381182 countsByYear W20863811822017 @default.
- W2086381182 countsByYear W20863811822018 @default.
- W2086381182 countsByYear W20863811822019 @default.
- W2086381182 countsByYear W20863811822020 @default.
- W2086381182 countsByYear W20863811822021 @default.
- W2086381182 countsByYear W20863811822022 @default.
- W2086381182 countsByYear W20863811822023 @default.
- W2086381182 crossrefType "journal-article" @default.
- W2086381182 hasAuthorship W2086381182A5010656224 @default.
- W2086381182 hasAuthorship W2086381182A5067779504 @default.
- W2086381182 hasAuthorship W2086381182A5080149697 @default.
- W2086381182 hasConcept C105795698 @default.
- W2086381182 hasConcept C11413529 @default.
- W2086381182 hasConcept C139945424 @default.
- W2086381182 hasConcept C153180895 @default.
- W2086381182 hasConcept C154945302 @default.
- W2086381182 hasConcept C155512373 @default.
- W2086381182 hasConcept C196216189 @default.
- W2086381182 hasConcept C22354355 @default.
- W2086381182 hasConcept C27181475 @default.
- W2086381182 hasConcept C2780092901 @default.
- W2086381182 hasConcept C2781067378 @default.
- W2086381182 hasConcept C33923547 @default.
- W2086381182 hasConcept C41008148 @default.
- W2086381182 hasConcept C46286280 @default.
- W2086381182 hasConcept C47432892 @default.
- W2086381182 hasConceptScore W2086381182C105795698 @default.
- W2086381182 hasConceptScore W2086381182C11413529 @default.
- W2086381182 hasConceptScore W2086381182C139945424 @default.
- W2086381182 hasConceptScore W2086381182C153180895 @default.
- W2086381182 hasConceptScore W2086381182C154945302 @default.
- W2086381182 hasConceptScore W2086381182C155512373 @default.
- W2086381182 hasConceptScore W2086381182C196216189 @default.
- W2086381182 hasConceptScore W2086381182C22354355 @default.
- W2086381182 hasConceptScore W2086381182C27181475 @default.
- W2086381182 hasConceptScore W2086381182C2780092901 @default.
- W2086381182 hasConceptScore W2086381182C2781067378 @default.
- W2086381182 hasConceptScore W2086381182C33923547 @default.
- W2086381182 hasConceptScore W2086381182C41008148 @default.
- W2086381182 hasConceptScore W2086381182C46286280 @default.
- W2086381182 hasConceptScore W2086381182C47432892 @default.