Matches in SemOpenAlex for { <https://semopenalex.org/work/W2086421650> ?p ?o ?g. }
- W2086421650 abstract "Gleason patterns of prostate cancer histopathology, characterized primarily by morphological and architectural attributes of histological structures (glands and nuclei), have been found to be highly correlated with disease aggressiveness and patient outcome. Gleason patterns 4 and 5 are highly correlated with more aggressive disease and poorer patient outcome, while Gleason patterns 1-3 tend to reflect more favorable patient outcome. Because Gleason grading is done manually by a pathologist visually examining glass (or digital) slides, subtle morphologic and architectural differences of histological attributes may result in grading errors and hence cause high inter-observer variability. Recently some researchers have proposed computerized decision support systems to automatically grade Gleason patterns by using features pertaining to nuclear architecture, gland morphology, as well as tissue texture. Automated characterization of gland morphology has been shown to distinguish between intermediate Gleason patterns 3 and 4 with high accuracy. Manifold learning (ML) schemes attempt to generate a low dimensional manifold representation of a higher dimensional feature space while simultaneously preserving nonlinear relationships between object instances. Classification can then be performed in the low dimensional space with high accuracy. However ML is sensitive to the samples contained in the dataset; changes in the dataset may alter the manifold structure. In this paper we present a manifold regularization technique to constrain the low dimensional manifold to a specific range of possible manifold shapes, the range being determined via a statistical shape model of manifolds (SSMM). In this work we demonstrate applications of the SSMM in (1) identifying samples on the manifold which contain noise, defined as those samples which deviate from the SSMM, and (2) accurate out-of-sample extrapolation (OSE) of newly acquired samples onto a manifold constrained by the SSMM. We demonstrate these applications of the SSMM in the context of distinguishing between Gleason patterns 3 and 4 using glandular morphologic features in a prostate histopathology dataset of 58 patient studies. Identifying and eliminating noisy samples from the manifold via the SSMM results in a statistically significant improvement in classification accuracy (CA), 93.0 ± 1.0% with removal of noisy samples compared to a CA of 90.9 ± 1.1% without removal of samples. The use of the SSMM for OSE of new independent test instances also shows statistically significant improvement in CA, 87.1±0.8% with the SSMM compared to 85.6±0.1% without the SSMM. Similar improvements were observed for the synthetic Swiss Roll and Helix datasets." @default.
- W2086421650 created "2016-06-24" @default.
- W2086421650 creator A5003265996 @default.
- W2086421650 creator A5027642699 @default.
- W2086421650 date "2012-02-23" @default.
- W2086421650 modified "2023-09-23" @default.
- W2086421650 title "Gleason grading of prostate histology utilizing manifold regularization via statistical shape model of manifolds" @default.
- W2086421650 cites W1485652923 @default.
- W2086421650 cites W1490760466 @default.
- W2086421650 cites W1554643662 @default.
- W2086421650 cites W1967307149 @default.
- W2086421650 cites W1975103383 @default.
- W2086421650 cites W1977551372 @default.
- W2086421650 cites W1987971958 @default.
- W2086421650 cites W2001141328 @default.
- W2086421650 cites W2012619263 @default.
- W2086421650 cites W2019315549 @default.
- W2086421650 cites W2022025102 @default.
- W2086421650 cites W2035809577 @default.
- W2086421650 cites W2038952578 @default.
- W2086421650 cites W2039332006 @default.
- W2086421650 cites W2043028407 @default.
- W2086421650 cites W2049365101 @default.
- W2086421650 cites W2053186076 @default.
- W2086421650 cites W2071844402 @default.
- W2086421650 cites W2083043726 @default.
- W2086421650 cites W2087222240 @default.
- W2086421650 cites W2097308346 @default.
- W2086421650 cites W2098263160 @default.
- W2086421650 cites W2100221277 @default.
- W2086421650 cites W2104290444 @default.
- W2086421650 cites W2109770548 @default.
- W2086421650 cites W2121947440 @default.
- W2086421650 cites W2123261262 @default.
- W2086421650 cites W2146514558 @default.
- W2086421650 cites W2146655125 @default.
- W2086421650 cites W2153934661 @default.
- W2086421650 cites W2156398782 @default.
- W2086421650 cites W2156549595 @default.
- W2086421650 cites W2156776019 @default.
- W2086421650 cites W2160633263 @default.
- W2086421650 cites W221956105 @default.
- W2086421650 cites W2224374441 @default.
- W2086421650 doi "https://doi.org/10.1117/12.912887" @default.
- W2086421650 hasPublicationYear "2012" @default.
- W2086421650 type Work @default.
- W2086421650 sameAs 2086421650 @default.
- W2086421650 citedByCount "6" @default.
- W2086421650 countsByYear W20864216502012 @default.
- W2086421650 countsByYear W20864216502013 @default.
- W2086421650 countsByYear W20864216502015 @default.
- W2086421650 countsByYear W20864216502016 @default.
- W2086421650 crossrefType "proceedings-article" @default.
- W2086421650 hasAuthorship W2086421650A5003265996 @default.
- W2086421650 hasAuthorship W2086421650A5027642699 @default.
- W2086421650 hasConcept C121608353 @default.
- W2086421650 hasConcept C126322002 @default.
- W2086421650 hasConcept C127413603 @default.
- W2086421650 hasConcept C151876577 @default.
- W2086421650 hasConcept C153180895 @default.
- W2086421650 hasConcept C154945302 @default.
- W2086421650 hasConcept C18903297 @default.
- W2086421650 hasConcept C2777286243 @default.
- W2086421650 hasConcept C2777522853 @default.
- W2086421650 hasConcept C2780192828 @default.
- W2086421650 hasConcept C41008148 @default.
- W2086421650 hasConcept C529865628 @default.
- W2086421650 hasConcept C70518039 @default.
- W2086421650 hasConcept C71924100 @default.
- W2086421650 hasConcept C78519656 @default.
- W2086421650 hasConcept C86803240 @default.
- W2086421650 hasConceptScore W2086421650C121608353 @default.
- W2086421650 hasConceptScore W2086421650C126322002 @default.
- W2086421650 hasConceptScore W2086421650C127413603 @default.
- W2086421650 hasConceptScore W2086421650C151876577 @default.
- W2086421650 hasConceptScore W2086421650C153180895 @default.
- W2086421650 hasConceptScore W2086421650C154945302 @default.
- W2086421650 hasConceptScore W2086421650C18903297 @default.
- W2086421650 hasConceptScore W2086421650C2777286243 @default.
- W2086421650 hasConceptScore W2086421650C2777522853 @default.
- W2086421650 hasConceptScore W2086421650C2780192828 @default.
- W2086421650 hasConceptScore W2086421650C41008148 @default.
- W2086421650 hasConceptScore W2086421650C529865628 @default.
- W2086421650 hasConceptScore W2086421650C70518039 @default.
- W2086421650 hasConceptScore W2086421650C71924100 @default.
- W2086421650 hasConceptScore W2086421650C78519656 @default.
- W2086421650 hasConceptScore W2086421650C86803240 @default.
- W2086421650 hasLocation W20864216501 @default.
- W2086421650 hasOpenAccess W2086421650 @default.
- W2086421650 hasPrimaryLocation W20864216501 @default.
- W2086421650 hasRelatedWork W1185714296 @default.
- W2086421650 hasRelatedWork W198500362 @default.
- W2086421650 hasRelatedWork W1995428479 @default.
- W2086421650 hasRelatedWork W2094314202 @default.
- W2086421650 hasRelatedWork W2128026831 @default.
- W2086421650 hasRelatedWork W2149766789 @default.
- W2086421650 hasRelatedWork W2350856174 @default.
- W2086421650 hasRelatedWork W2364477267 @default.
- W2086421650 hasRelatedWork W2804842029 @default.
- W2086421650 hasRelatedWork W2901620918 @default.