Matches in SemOpenAlex for { <https://semopenalex.org/work/W2086495977> ?p ?o ?g. }
- W2086495977 endingPage "e34637" @default.
- W2086495977 startingPage "e34637" @default.
- W2086495977 abstract "A stochastic Markov chain model for metastatic progression is developed for primary lung cancer based on a network construction of metastatic sites with dynamics modeled as an ensemble of random walkers on the network. We calculate a transition matrix, with entries (transition probabilities) interpreted as random variables, and use it to construct a circular bi-directional network of primary and metastatic locations based on postmortem tissue analysis of 3827 autopsies on untreated patients documenting all primary tumor locations and metastatic sites from this population. The resulting 50 potential metastatic sites are connected by directed edges with distributed weightings, where the site connections and weightings are obtained by calculating the entries of an ensemble of transition matrices so that the steady-state distribution obtained from the long-time limit of the Markov chain dynamical system corresponds to the ensemble metastatic distribution obtained from the autopsy data set. We condition our search for a transition matrix on an initial distribution of metastatic tumors obtained from the data set. Through an iterative numerical search procedure, we adjust the entries of a sequence of approximations until a transition matrix with the correct steady-state is found (up to a numerical threshold). Since this constrained linear optimization problem is underdetermined, we characterize the statistical variance of the ensemble of transition matrices calculated using the means and variances of their singular value distributions as a diagnostic tool. We interpret the ensemble averaged transition probabilities as (approximately) normally distributed random variables. The model allows us to simulate and quantify disease progression pathways and timescales of progression from the lung position to other sites and we highlight several key findings based on the model." @default.
- W2086495977 created "2016-06-24" @default.
- W2086495977 creator A5000472988 @default.
- W2086495977 creator A5003429104 @default.
- W2086495977 creator A5036013545 @default.
- W2086495977 creator A5036466135 @default.
- W2086495977 creator A5046869833 @default.
- W2086495977 creator A5071469591 @default.
- W2086495977 date "2012-04-27" @default.
- W2086495977 modified "2023-09-30" @default.
- W2086495977 title "A Stochastic Markov Chain Model to Describe Lung Cancer Growth and Metastasis" @default.
- W2086495977 cites W1520425169 @default.
- W2086495977 cites W1568538869 @default.
- W2086495977 cites W1796423611 @default.
- W2086495977 cites W1985727076 @default.
- W2086495977 cites W1993344214 @default.
- W2086495977 cites W2024331903 @default.
- W2086495977 cites W2033377496 @default.
- W2086495977 cites W2043251685 @default.
- W2086495977 cites W2045209734 @default.
- W2086495977 cites W2051572649 @default.
- W2086495977 cites W2051732933 @default.
- W2086495977 cites W2060111924 @default.
- W2086495977 cites W2061335873 @default.
- W2086495977 cites W2064168048 @default.
- W2086495977 cites W2083045667 @default.
- W2086495977 cites W2088040588 @default.
- W2086495977 cites W2101267973 @default.
- W2086495977 cites W2111976640 @default.
- W2086495977 cites W2133147483 @default.
- W2086495977 cites W2148606196 @default.
- W2086495977 cites W2152393981 @default.
- W2086495977 cites W2155969596 @default.
- W2086495977 cites W2164727176 @default.
- W2086495977 cites W2167511369 @default.
- W2086495977 cites W2170157144 @default.
- W2086495977 cites W4237276785 @default.
- W2086495977 cites W4238452917 @default.
- W2086495977 cites W4245662196 @default.
- W2086495977 doi "https://doi.org/10.1371/journal.pone.0034637" @default.
- W2086495977 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3338733" @default.
- W2086495977 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22558094" @default.
- W2086495977 hasPublicationYear "2012" @default.
- W2086495977 type Work @default.
- W2086495977 sameAs 2086495977 @default.
- W2086495977 citedByCount "71" @default.
- W2086495977 countsByYear W20864959772012 @default.
- W2086495977 countsByYear W20864959772013 @default.
- W2086495977 countsByYear W20864959772014 @default.
- W2086495977 countsByYear W20864959772015 @default.
- W2086495977 countsByYear W20864959772016 @default.
- W2086495977 countsByYear W20864959772017 @default.
- W2086495977 countsByYear W20864959772018 @default.
- W2086495977 countsByYear W20864959772019 @default.
- W2086495977 countsByYear W20864959772020 @default.
- W2086495977 countsByYear W20864959772021 @default.
- W2086495977 countsByYear W20864959772022 @default.
- W2086495977 countsByYear W20864959772023 @default.
- W2086495977 crossrefType "journal-article" @default.
- W2086495977 hasAuthorship W2086495977A5000472988 @default.
- W2086495977 hasAuthorship W2086495977A5003429104 @default.
- W2086495977 hasAuthorship W2086495977A5036013545 @default.
- W2086495977 hasAuthorship W2086495977A5036466135 @default.
- W2086495977 hasAuthorship W2086495977A5046869833 @default.
- W2086495977 hasAuthorship W2086495977A5071469591 @default.
- W2086495977 hasBestOaLocation W20864959771 @default.
- W2086495977 hasConcept C105795698 @default.
- W2086495977 hasConcept C121332964 @default.
- W2086495977 hasConcept C121864883 @default.
- W2086495977 hasConcept C158693339 @default.
- W2086495977 hasConcept C2908647359 @default.
- W2086495977 hasConcept C33923547 @default.
- W2086495977 hasConcept C41008148 @default.
- W2086495977 hasConcept C49555168 @default.
- W2086495977 hasConcept C62520636 @default.
- W2086495977 hasConcept C64812099 @default.
- W2086495977 hasConcept C71924100 @default.
- W2086495977 hasConcept C98763669 @default.
- W2086495977 hasConcept C99454951 @default.
- W2086495977 hasConceptScore W2086495977C105795698 @default.
- W2086495977 hasConceptScore W2086495977C121332964 @default.
- W2086495977 hasConceptScore W2086495977C121864883 @default.
- W2086495977 hasConceptScore W2086495977C158693339 @default.
- W2086495977 hasConceptScore W2086495977C2908647359 @default.
- W2086495977 hasConceptScore W2086495977C33923547 @default.
- W2086495977 hasConceptScore W2086495977C41008148 @default.
- W2086495977 hasConceptScore W2086495977C49555168 @default.
- W2086495977 hasConceptScore W2086495977C62520636 @default.
- W2086495977 hasConceptScore W2086495977C64812099 @default.
- W2086495977 hasConceptScore W2086495977C71924100 @default.
- W2086495977 hasConceptScore W2086495977C98763669 @default.
- W2086495977 hasConceptScore W2086495977C99454951 @default.
- W2086495977 hasIssue "4" @default.
- W2086495977 hasLocation W20864959771 @default.
- W2086495977 hasLocation W20864959772 @default.
- W2086495977 hasLocation W20864959773 @default.
- W2086495977 hasLocation W20864959774 @default.
- W2086495977 hasLocation W20864959775 @default.