Matches in SemOpenAlex for { <https://semopenalex.org/work/W2086768587> ?p ?o ?g. }
- W2086768587 abstract "Many fields of artificial intelligence have been developed such as computational intelligence and machine learning involving neural networks, fuzzy systems, genetic algorithms, intelligent agents and Support Vector Machines (SVM). SVM is a machine learning methodology with great results in image classification. In this paper, we present the potential of SVMs to automatically extract buildings in suburban area using Very High Resolution Satellite (VHRS) images. To achieve this goal, we use object based approach: Segmentation before classification in order to create meaningful image objects using color features. In the first step, we form objects with the aid of mean shift clustering algorithm. Then, SVM classifier was used to extract buildings. The proposed method has been applied on a suburban area in Tetuan city (Morocco) and 83.76% of existing buildings have been extracted by only using color features. This result can be improved by adding other features (e.g., spectral, texture, morphology and context). DOI: http://dx.doi.org/10.11591/ij-ai.v2i1.1781" @default.
- W2086768587 created "2016-06-24" @default.
- W2086768587 creator A5015990283 @default.
- W2086768587 creator A5020706261 @default.
- W2086768587 date "2013-03-01" @default.
- W2086768587 modified "2023-09-23" @default.
- W2086768587 title "Support Vector Machines for Object Based Building Extraction in Suburban Area using Very High Resolution Satellite Images, a Case Study: Tetuan, Morocco" @default.
- W2086768587 cites W118492261 @default.
- W2086768587 cites W1530699444 @default.
- W2086768587 cites W1543659671 @default.
- W2086768587 cites W1648710605 @default.
- W2086768587 cites W1699484993 @default.
- W2086768587 cites W1971025369 @default.
- W2086768587 cites W1973772845 @default.
- W2086768587 cites W1991192616 @default.
- W2086768587 cites W1992782705 @default.
- W2086768587 cites W2018839022 @default.
- W2086768587 cites W2061421991 @default.
- W2086768587 cites W2063395216 @default.
- W2086768587 cites W2063907334 @default.
- W2086768587 cites W2065552833 @default.
- W2086768587 cites W2067191022 @default.
- W2086768587 cites W2077797751 @default.
- W2086768587 cites W2078619499 @default.
- W2086768587 cites W2080494636 @default.
- W2086768587 cites W2096128536 @default.
- W2086768587 cites W2098596049 @default.
- W2086768587 cites W2118823101 @default.
- W2086768587 cites W2124706543 @default.
- W2086768587 cites W2126092053 @default.
- W2086768587 cites W2134337515 @default.
- W2086768587 cites W2136251662 @default.
- W2086768587 cites W2139405010 @default.
- W2086768587 cites W2139514605 @default.
- W2086768587 cites W2142012908 @default.
- W2086768587 cites W2146952738 @default.
- W2086768587 cites W2147544935 @default.
- W2086768587 cites W2152201865 @default.
- W2086768587 cites W2153747028 @default.
- W2086768587 cites W2161372002 @default.
- W2086768587 cites W2167657974 @default.
- W2086768587 cites W2203777347 @default.
- W2086768587 cites W3171993160 @default.
- W2086768587 cites W2969484984 @default.
- W2086768587 doi "https://doi.org/10.11591/ij-ai.v2i1.1781" @default.
- W2086768587 hasPublicationYear "2013" @default.
- W2086768587 type Work @default.
- W2086768587 sameAs 2086768587 @default.
- W2086768587 citedByCount "14" @default.
- W2086768587 countsByYear W20867685872013 @default.
- W2086768587 countsByYear W20867685872014 @default.
- W2086768587 countsByYear W20867685872015 @default.
- W2086768587 countsByYear W20867685872016 @default.
- W2086768587 countsByYear W20867685872017 @default.
- W2086768587 countsByYear W20867685872018 @default.
- W2086768587 countsByYear W20867685872019 @default.
- W2086768587 countsByYear W20867685872021 @default.
- W2086768587 countsByYear W20867685872022 @default.
- W2086768587 crossrefType "journal-article" @default.
- W2086768587 hasAuthorship W2086768587A5015990283 @default.
- W2086768587 hasAuthorship W2086768587A5020706261 @default.
- W2086768587 hasConcept C12267149 @default.
- W2086768587 hasConcept C127313418 @default.
- W2086768587 hasConcept C127413603 @default.
- W2086768587 hasConcept C146978453 @default.
- W2086768587 hasConcept C154945302 @default.
- W2086768587 hasConcept C185592680 @default.
- W2086768587 hasConcept C19269812 @default.
- W2086768587 hasConcept C2778102629 @default.
- W2086768587 hasConcept C2781238097 @default.
- W2086768587 hasConcept C2985301230 @default.
- W2086768587 hasConcept C3020199158 @default.
- W2086768587 hasConcept C31972630 @default.
- W2086768587 hasConcept C41008148 @default.
- W2086768587 hasConcept C43617362 @default.
- W2086768587 hasConcept C4725764 @default.
- W2086768587 hasConcept C62649853 @default.
- W2086768587 hasConceptScore W2086768587C12267149 @default.
- W2086768587 hasConceptScore W2086768587C127313418 @default.
- W2086768587 hasConceptScore W2086768587C127413603 @default.
- W2086768587 hasConceptScore W2086768587C146978453 @default.
- W2086768587 hasConceptScore W2086768587C154945302 @default.
- W2086768587 hasConceptScore W2086768587C185592680 @default.
- W2086768587 hasConceptScore W2086768587C19269812 @default.
- W2086768587 hasConceptScore W2086768587C2778102629 @default.
- W2086768587 hasConceptScore W2086768587C2781238097 @default.
- W2086768587 hasConceptScore W2086768587C2985301230 @default.
- W2086768587 hasConceptScore W2086768587C3020199158 @default.
- W2086768587 hasConceptScore W2086768587C31972630 @default.
- W2086768587 hasConceptScore W2086768587C41008148 @default.
- W2086768587 hasConceptScore W2086768587C43617362 @default.
- W2086768587 hasConceptScore W2086768587C4725764 @default.
- W2086768587 hasConceptScore W2086768587C62649853 @default.
- W2086768587 hasIssue "1" @default.
- W2086768587 hasLocation W20867685871 @default.
- W2086768587 hasOpenAccess W2086768587 @default.
- W2086768587 hasPrimaryLocation W20867685871 @default.
- W2086768587 hasRelatedWork W1411828795 @default.
- W2086768587 hasRelatedWork W1964268238 @default.
- W2086768587 hasRelatedWork W2363258459 @default.