Matches in SemOpenAlex for { <https://semopenalex.org/work/W2086961759> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2086961759 abstract "Stock market forecasting has attracted a lot of research interests in previous literature. Traditionally, the autoregressive moving average (ARMA) model has been one of the most widely used linear models in time series forecasting. However, the ARMA model cannot easily capture the nonlinear patterns. And recent studies have shown that artificial neural networks (ANN) method achieved better performance than traditional statistical ones. ANN approaches have, however, suffered from difficulties with generalization, producing models that can overfit the data. Support vector machines (SVMs), a novel neural network technique, have been successfully applied in solving nonlinear regression estimation problems. Therefore, this investigation proposes a hybrid methodology that exploits the unique strength of the ARMA model and the SVMs model in the stock market forecasting problem in an attempt to provide a model with better explanatory power. Real data sets of stock market were used to examine the forecasting accuracy of the proposed model. The results of computational tests are very promising." @default.
- W2086961759 created "2016-06-24" @default.
- W2086961759 creator A5049548182 @default.
- W2086961759 creator A5051120464 @default.
- W2086961759 creator A5057908066 @default.
- W2086961759 date "2008-09-01" @default.
- W2086961759 modified "2023-09-26" @default.
- W2086961759 title "Stock market forecasting model based on a hybrid ARMA and support vector machines" @default.
- W2086961759 cites W1564556749 @default.
- W2086961759 cites W2062634819 @default.
- W2086961759 cites W2081180521 @default.
- W2086961759 cites W2085034397 @default.
- W2086961759 cites W2085831731 @default.
- W2086961759 cites W2103780778 @default.
- W2086961759 cites W2117014758 @default.
- W2086961759 cites W2137634615 @default.
- W2086961759 cites W2158663270 @default.
- W2086961759 cites W2159494272 @default.
- W2086961759 cites W2172147742 @default.
- W2086961759 doi "https://doi.org/10.1109/icmse.2008.4669077" @default.
- W2086961759 hasPublicationYear "2008" @default.
- W2086961759 type Work @default.
- W2086961759 sameAs 2086961759 @default.
- W2086961759 citedByCount "11" @default.
- W2086961759 countsByYear W20869617592012 @default.
- W2086961759 countsByYear W20869617592014 @default.
- W2086961759 countsByYear W20869617592017 @default.
- W2086961759 countsByYear W20869617592019 @default.
- W2086961759 countsByYear W20869617592020 @default.
- W2086961759 countsByYear W20869617592021 @default.
- W2086961759 countsByYear W20869617592022 @default.
- W2086961759 crossrefType "proceedings-article" @default.
- W2086961759 hasAuthorship W2086961759A5049548182 @default.
- W2086961759 hasAuthorship W2086961759A5051120464 @default.
- W2086961759 hasAuthorship W2086961759A5057908066 @default.
- W2086961759 hasConcept C119857082 @default.
- W2086961759 hasConcept C121332964 @default.
- W2086961759 hasConcept C12267149 @default.
- W2086961759 hasConcept C124101348 @default.
- W2086961759 hasConcept C149782125 @default.
- W2086961759 hasConcept C151406439 @default.
- W2086961759 hasConcept C151730666 @default.
- W2086961759 hasConcept C154945302 @default.
- W2086961759 hasConcept C158622935 @default.
- W2086961759 hasConcept C159877910 @default.
- W2086961759 hasConcept C22019652 @default.
- W2086961759 hasConcept C2780299701 @default.
- W2086961759 hasConcept C2780762169 @default.
- W2086961759 hasConcept C33923547 @default.
- W2086961759 hasConcept C41008148 @default.
- W2086961759 hasConcept C50644808 @default.
- W2086961759 hasConcept C62520636 @default.
- W2086961759 hasConcept C74883015 @default.
- W2086961759 hasConcept C86803240 @default.
- W2086961759 hasConceptScore W2086961759C119857082 @default.
- W2086961759 hasConceptScore W2086961759C121332964 @default.
- W2086961759 hasConceptScore W2086961759C12267149 @default.
- W2086961759 hasConceptScore W2086961759C124101348 @default.
- W2086961759 hasConceptScore W2086961759C149782125 @default.
- W2086961759 hasConceptScore W2086961759C151406439 @default.
- W2086961759 hasConceptScore W2086961759C151730666 @default.
- W2086961759 hasConceptScore W2086961759C154945302 @default.
- W2086961759 hasConceptScore W2086961759C158622935 @default.
- W2086961759 hasConceptScore W2086961759C159877910 @default.
- W2086961759 hasConceptScore W2086961759C22019652 @default.
- W2086961759 hasConceptScore W2086961759C2780299701 @default.
- W2086961759 hasConceptScore W2086961759C2780762169 @default.
- W2086961759 hasConceptScore W2086961759C33923547 @default.
- W2086961759 hasConceptScore W2086961759C41008148 @default.
- W2086961759 hasConceptScore W2086961759C50644808 @default.
- W2086961759 hasConceptScore W2086961759C62520636 @default.
- W2086961759 hasConceptScore W2086961759C74883015 @default.
- W2086961759 hasConceptScore W2086961759C86803240 @default.
- W2086961759 hasLocation W20869617591 @default.
- W2086961759 hasOpenAccess W2086961759 @default.
- W2086961759 hasPrimaryLocation W20869617591 @default.
- W2086961759 hasRelatedWork W1510931911 @default.
- W2086961759 hasRelatedWork W1996541855 @default.
- W2086961759 hasRelatedWork W2356563958 @default.
- W2086961759 hasRelatedWork W29364218 @default.
- W2086961759 hasRelatedWork W2989932438 @default.
- W2086961759 hasRelatedWork W3099765033 @default.
- W2086961759 hasRelatedWork W3175189414 @default.
- W2086961759 hasRelatedWork W4205958290 @default.
- W2086961759 hasRelatedWork W4210794429 @default.
- W2086961759 hasRelatedWork W4225691219 @default.
- W2086961759 isParatext "false" @default.
- W2086961759 isRetracted "false" @default.
- W2086961759 magId "2086961759" @default.
- W2086961759 workType "article" @default.