Matches in SemOpenAlex for { <https://semopenalex.org/work/W2087012955> ?p ?o ?g. }
- W2087012955 endingPage "112" @default.
- W2087012955 startingPage "97" @default.
- W2087012955 abstract "Statistical analysis of extremes currently assumes that data arise from a stationary process, although such an hypothesis is not easily assessable and should therefore be considered as an uncertainty. The aim of this paper is to describe a Bayesian framework for this purpose, considering several probabilistic models (stationary, step-change and linear trend models) and four extreme values distributions (exponential, generalized Pareto, Gumbel and GEV). Prior distributions are specified by using regional prior knowledge about quantiles. Posterior distributions are used to estimate parameters, quantify the probability of models and derive a realistic frequency analysis, which takes into account estimation, distribution and stationarity uncertainties. MCMC methods are needed for this purpose, and are described in the article. Finally, an application to a POT discharge series is presented, with an analysis of both occurrence process and peak distribution." @default.
- W2087012955 created "2016-06-24" @default.
- W2087012955 creator A5078289757 @default.
- W2087012955 creator A5081503838 @default.
- W2087012955 creator A5026337135 @default.
- W2087012955 date "2006-04-01" @default.
- W2087012955 modified "2023-10-13" @default.
- W2087012955 title "Statistical analysis of extreme events in a non-stationary context via a Bayesian framework: case study with peak-over-threshold data" @default.
- W2087012955 cites W1506971690 @default.
- W2087012955 cites W1611150768 @default.
- W2087012955 cites W1624356652 @default.
- W2087012955 cites W1690170385 @default.
- W2087012955 cites W1964513767 @default.
- W2087012955 cites W1978662910 @default.
- W2087012955 cites W1982891217 @default.
- W2087012955 cites W1985870758 @default.
- W2087012955 cites W1988520084 @default.
- W2087012955 cites W1989166696 @default.
- W2087012955 cites W1990625770 @default.
- W2087012955 cites W1996924693 @default.
- W2087012955 cites W2015366751 @default.
- W2087012955 cites W2015749074 @default.
- W2087012955 cites W2036501130 @default.
- W2087012955 cites W2036983007 @default.
- W2087012955 cites W2038429130 @default.
- W2087012955 cites W2051203581 @default.
- W2087012955 cites W2056760934 @default.
- W2087012955 cites W2060949406 @default.
- W2087012955 cites W2068480436 @default.
- W2087012955 cites W2082531715 @default.
- W2087012955 cites W2120347659 @default.
- W2087012955 cites W2122456939 @default.
- W2087012955 cites W2138309709 @default.
- W2087012955 cites W2140303035 @default.
- W2087012955 cites W2153470697 @default.
- W2087012955 cites W2159689047 @default.
- W2087012955 cites W3122207805 @default.
- W2087012955 cites W4211177544 @default.
- W2087012955 cites W4229929111 @default.
- W2087012955 cites W4236154753 @default.
- W2087012955 cites W4247690662 @default.
- W2087012955 doi "https://doi.org/10.1007/s00477-006-0047-4" @default.
- W2087012955 hasPublicationYear "2006" @default.
- W2087012955 type Work @default.
- W2087012955 sameAs 2087012955 @default.
- W2087012955 citedByCount "96" @default.
- W2087012955 countsByYear W20870129552012 @default.
- W2087012955 countsByYear W20870129552013 @default.
- W2087012955 countsByYear W20870129552014 @default.
- W2087012955 countsByYear W20870129552015 @default.
- W2087012955 countsByYear W20870129552016 @default.
- W2087012955 countsByYear W20870129552017 @default.
- W2087012955 countsByYear W20870129552018 @default.
- W2087012955 countsByYear W20870129552019 @default.
- W2087012955 countsByYear W20870129552020 @default.
- W2087012955 countsByYear W20870129552021 @default.
- W2087012955 countsByYear W20870129552022 @default.
- W2087012955 countsByYear W20870129552023 @default.
- W2087012955 crossrefType "journal-article" @default.
- W2087012955 hasAuthorship W2087012955A5026337135 @default.
- W2087012955 hasAuthorship W2087012955A5078289757 @default.
- W2087012955 hasAuthorship W2087012955A5081503838 @default.
- W2087012955 hasBestOaLocation W20870129552 @default.
- W2087012955 hasConcept C105795698 @default.
- W2087012955 hasConcept C107673813 @default.
- W2087012955 hasConcept C111350023 @default.
- W2087012955 hasConcept C118671147 @default.
- W2087012955 hasConcept C133514767 @default.
- W2087012955 hasConcept C137610916 @default.
- W2087012955 hasConcept C147581598 @default.
- W2087012955 hasConcept C149782125 @default.
- W2087012955 hasConcept C151730666 @default.
- W2087012955 hasConcept C169707849 @default.
- W2087012955 hasConcept C177769412 @default.
- W2087012955 hasConcept C190373308 @default.
- W2087012955 hasConcept C2779343474 @default.
- W2087012955 hasConcept C33923547 @default.
- W2087012955 hasConcept C41008148 @default.
- W2087012955 hasConcept C86803240 @default.
- W2087012955 hasConceptScore W2087012955C105795698 @default.
- W2087012955 hasConceptScore W2087012955C107673813 @default.
- W2087012955 hasConceptScore W2087012955C111350023 @default.
- W2087012955 hasConceptScore W2087012955C118671147 @default.
- W2087012955 hasConceptScore W2087012955C133514767 @default.
- W2087012955 hasConceptScore W2087012955C137610916 @default.
- W2087012955 hasConceptScore W2087012955C147581598 @default.
- W2087012955 hasConceptScore W2087012955C149782125 @default.
- W2087012955 hasConceptScore W2087012955C151730666 @default.
- W2087012955 hasConceptScore W2087012955C169707849 @default.
- W2087012955 hasConceptScore W2087012955C177769412 @default.
- W2087012955 hasConceptScore W2087012955C190373308 @default.
- W2087012955 hasConceptScore W2087012955C2779343474 @default.
- W2087012955 hasConceptScore W2087012955C33923547 @default.
- W2087012955 hasConceptScore W2087012955C41008148 @default.
- W2087012955 hasConceptScore W2087012955C86803240 @default.
- W2087012955 hasIssue "2" @default.
- W2087012955 hasLocation W20870129551 @default.
- W2087012955 hasLocation W20870129552 @default.