Matches in SemOpenAlex for { <https://semopenalex.org/work/W2087119683> ?p ?o ?g. }
- W2087119683 endingPage "440" @default.
- W2087119683 startingPage "423" @default.
- W2087119683 abstract "Ninety diamonds from the Eocene Panda kimberlite (Ekati Mine, Northwest Territories, Canada) were analyzed for the major and trace element compositions of their mineral inclusions using electron microprobe techniques (EPMA) and secondary ion mass spectrometry (SIMS). Additionally, nitrogen aggregation characteristics of the host diamonds were measured using Fourier-transform infrared spectroscopy (FTIRS). Within the cratonic lithosphere, Panda diamonds are principally derived from peridotitic sources (85 %) with a minor content of eclogitic diamonds (10 %). Ferropericlase bearing diamonds (5 %) contain combinations of ferropericlase with either Mg-Al spinel plus olivine or with olivine or with a pure silica phase. The chemical char- acteristics of these inclusions are in accordance with a lithospheric origin from ferropericlase-bearing dunites. Ferropericlase coexisting with CaSiO3 (most likely originally included as Ca-silicate perovskite), however, is regarded as evidence for a lower mantle origin of the host diamond. Major element compositions show that the peridotitic diamonds formed in a moderately depleted environment, indicated by the presence of harzburgitic garnet inclusions with calcium contents generally > 2.5 wt% CaO and olivines with Mg numbers (100*Mg/(Mg+Fe)) of 92-93.5. Rare earth element (REE) concentrations in peridotitic garnets largely follow subdivisions based on major elements with lherzolitic garnets showing middle REE to heavy REE enriched, slightly sinusoidal patterns, whilst harzburgitic garnets have distinctly sinusoidal REEN. Inclusion geothermobarometry indicates formation of peridotitic diamonds in the temperature range 1100-1250°C, following a geothermal gradient of 40-42 mW/m2, in accordance with similar observations world-wide. Touching garnet-olivine and garnet-orthopyroxene inclusion pairs equilibrated at lower temperatures of 1000-1100°C, corresponding to a geothermal gradient around 37 mW/m2. The higher temperatures are considered to be those prevailing during diamond formation. Nitrogen contents in Panda diamonds vary strongly from below detection (< 10 ppm) to 2700 atomic ppm. Nitrogen aggrega- tion ranges from poorly aggregated (Type IaA diamond) to highly aggregated (Type IaB diamond). If all diamonds that show signs of plastic deformation during mantle residence are excluded from the dataset, then a diamond subset becomes apparent with an overall low nitrogen aggregation state of < 30 % B-center. This result may indicate that plastic deformation increases the aggre- gation of nitrogen in Panda diamonds. Taking the Early Archean Re-Os isochron date for sulfide inclusions in Panda diamonds (Westerlund et al., 2003b) at face value, the low aggregation states of undeformed diamonds may indicate mantle residence at rela- tively low temperatures (< 1100°C). If this is the case, the decrease in temperature inferred from the comparison of touching and non-touching inclusion pairs must have occurred soon after diamond formation. Thus diamond formation beneath the central Slave may be restricted to short lived and localized thermal events. An apparent increase in geothermal gradient with depth in the litho- spheric mantle beneath the Central Slave for the time of kimberlite eruptions (Upper Cretaceous to Eocene) may have a similar cause and reflect transient heating of the deep lithosphere during melt infiltration." @default.
- W2087119683 created "2016-06-24" @default.
- W2087119683 creator A5007530282 @default.
- W2087119683 creator A5038038693 @default.
- W2087119683 creator A5058034295 @default.
- W2087119683 creator A5061703044 @default.
- W2087119683 creator A5063963690 @default.
- W2087119683 date "2005-06-14" @default.
- W2087119683 modified "2023-10-01" @default.
- W2087119683 title "Mineral inclusions in diamonds from the Panda kimberlite, Slave Province, Canada" @default.
- W2087119683 cites W1485237895 @default.
- W2087119683 cites W1512687909 @default.
- W2087119683 cites W1966238461 @default.
- W2087119683 cites W1968875884 @default.
- W2087119683 cites W1969859799 @default.
- W2087119683 cites W1971797912 @default.
- W2087119683 cites W1975175724 @default.
- W2087119683 cites W1977520878 @default.
- W2087119683 cites W1979513085 @default.
- W2087119683 cites W1979966408 @default.
- W2087119683 cites W1980220587 @default.
- W2087119683 cites W1981269543 @default.
- W2087119683 cites W1983666544 @default.
- W2087119683 cites W1989007080 @default.
- W2087119683 cites W1989054411 @default.
- W2087119683 cites W1990805116 @default.
- W2087119683 cites W1996428254 @default.
- W2087119683 cites W1996464890 @default.
- W2087119683 cites W1997769874 @default.
- W2087119683 cites W2005369484 @default.
- W2087119683 cites W2005471856 @default.
- W2087119683 cites W2005647805 @default.
- W2087119683 cites W2014988054 @default.
- W2087119683 cites W2018890533 @default.
- W2087119683 cites W2023837599 @default.
- W2087119683 cites W2024037662 @default.
- W2087119683 cites W2024110734 @default.
- W2087119683 cites W2030005096 @default.
- W2087119683 cites W2030322489 @default.
- W2087119683 cites W2032316321 @default.
- W2087119683 cites W2039657115 @default.
- W2087119683 cites W2040340001 @default.
- W2087119683 cites W2040365786 @default.
- W2087119683 cites W2046141409 @default.
- W2087119683 cites W2055055397 @default.
- W2087119683 cites W2057172391 @default.
- W2087119683 cites W2059730541 @default.
- W2087119683 cites W2075820128 @default.
- W2087119683 cites W2081506232 @default.
- W2087119683 cites W2086518202 @default.
- W2087119683 cites W2088095502 @default.
- W2087119683 cites W2089868979 @default.
- W2087119683 cites W2089970086 @default.
- W2087119683 cites W2090072357 @default.
- W2087119683 cites W2093599820 @default.
- W2087119683 cites W2095295800 @default.
- W2087119683 cites W2096648343 @default.
- W2087119683 cites W2109670845 @default.
- W2087119683 cites W2110119770 @default.
- W2087119683 cites W2133109912 @default.
- W2087119683 cites W2135823359 @default.
- W2087119683 cites W2141890535 @default.
- W2087119683 cites W2153292099 @default.
- W2087119683 cites W2329796711 @default.
- W2087119683 cites W2335263844 @default.
- W2087119683 cites W2566172421 @default.
- W2087119683 cites W2971435647 @default.
- W2087119683 cites W3045937133 @default.
- W2087119683 cites W3091345519 @default.
- W2087119683 cites W3116942039 @default.
- W2087119683 cites W3160743068 @default.
- W2087119683 cites W3169452323 @default.
- W2087119683 cites W3193646794 @default.
- W2087119683 cites W3200977106 @default.
- W2087119683 cites W3201643083 @default.
- W2087119683 cites W436199088 @default.
- W2087119683 cites W642380046 @default.
- W2087119683 cites W78293949 @default.
- W2087119683 doi "https://doi.org/10.1127/0935-1221/2005/0017-0423" @default.
- W2087119683 hasPublicationYear "2005" @default.
- W2087119683 type Work @default.
- W2087119683 sameAs 2087119683 @default.
- W2087119683 citedByCount "55" @default.
- W2087119683 countsByYear W20871196832012 @default.
- W2087119683 countsByYear W20871196832013 @default.
- W2087119683 countsByYear W20871196832014 @default.
- W2087119683 countsByYear W20871196832015 @default.
- W2087119683 countsByYear W20871196832016 @default.
- W2087119683 countsByYear W20871196832017 @default.
- W2087119683 countsByYear W20871196832018 @default.
- W2087119683 countsByYear W20871196832019 @default.
- W2087119683 countsByYear W20871196832020 @default.
- W2087119683 countsByYear W20871196832022 @default.
- W2087119683 countsByYear W20871196832023 @default.
- W2087119683 crossrefType "journal-article" @default.
- W2087119683 hasAuthorship W2087119683A5007530282 @default.
- W2087119683 hasAuthorship W2087119683A5038038693 @default.
- W2087119683 hasAuthorship W2087119683A5058034295 @default.