Matches in SemOpenAlex for { <https://semopenalex.org/work/W2087156935> ?p ?o ?g. }
- W2087156935 endingPage "3927" @default.
- W2087156935 startingPage "3905" @default.
- W2087156935 abstract "Seven sediment cores were taken in the Sea of Okhotsk in a south-north transect along the slope of Sakhalin Island. The retrieved anoxic sediments and pore fluids were analyzed for particulate organic carbon (POC), total nitrogen, total sulfur, dissolved sulfate, sulfide, methane, ammonium, iodide, bromide, calcium, and total alkalinity. A novel method was developed to derive sedimentation rates from a steady-state nitrogen mass balance. Rates of organic matter degradation, sulfate reduction, methane turnover, and carbonate precipitation were derived from the data applying a steady-state transport-reaction model. A good fit to the data set was obtained using the following new rate law for organic matter degradation in anoxic sediments:View the MathML sourceRPOC=KCC(DIC)+C(CH4)+KC·kx·POCTurn MathJax onThe rate of particulate organic carbon degradation (RPOC) was found to depend on the POC concentration, an age-dependent kinetic constant (kx) and the concentration of dissolved metabolites. Rates are inhibited at high dissolved inorganic carbon (DIC) and dissolved methane (CH4) concentrations. The best fit to the data was obtained applying an inhibition constant KC of 35 ± 5 mM. The modeling further showed that bromide and iodide are preferentially released during organic matter degradation in anoxic sediments. Carbonate precipitation is driven by the anaerobic oxidation of methane (AOM) and removes one third of the carbonate alkalinity generated via AOM. The new model of organic matter degradation was further tested and extended to simulate the accumulation of gas hydrates at Blake Ridge. A good fit to the available POC, total nitrogen, dissolved ammonium, bromide, iodide and sulfate data was obtained confirming that the new model can be used to simulate organic matter degradation and methane production over the entire hydrate stability zone (HSZ). The modeling revealed that most of the gas hydrates accumulating in Blake Ridge sediments are neither formed by organic matter degradation within the HSZ nor by dissolved methane transported to the surface by upward fluid flow but rather through the ascent of gas bubbles from deeper sediment layers. The model was further applied to predict rates of hydrate accumulation in Sakhalin slope sediments. It showed that only up to 0.3% of the pore space is occupied by gas hydrates formed via organic matter degradation within the HSZ. Gas bubble ascent may, however, significantly increase the total amount of hydrate in these deposits." @default.
- W2087156935 created "2016-06-24" @default.
- W2087156935 creator A5010330660 @default.
- W2087156935 creator A5032247296 @default.
- W2087156935 creator A5051890912 @default.
- W2087156935 creator A5062527109 @default.
- W2087156935 creator A5067916549 @default.
- W2087156935 creator A5076521713 @default.
- W2087156935 date "2006-08-01" @default.
- W2087156935 modified "2023-10-04" @default.
- W2087156935 title "Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments" @default.
- W2087156935 cites W1482617633 @default.
- W2087156935 cites W1767871707 @default.
- W2087156935 cites W1898166770 @default.
- W2087156935 cites W1965468773 @default.
- W2087156935 cites W1976690501 @default.
- W2087156935 cites W1984471612 @default.
- W2087156935 cites W1990046273 @default.
- W2087156935 cites W1992076990 @default.
- W2087156935 cites W1996318896 @default.
- W2087156935 cites W1998014287 @default.
- W2087156935 cites W2007452684 @default.
- W2087156935 cites W2007512970 @default.
- W2087156935 cites W2009444082 @default.
- W2087156935 cites W2011474245 @default.
- W2087156935 cites W2011902625 @default.
- W2087156935 cites W2012350539 @default.
- W2087156935 cites W2017471957 @default.
- W2087156935 cites W2017772757 @default.
- W2087156935 cites W2029550314 @default.
- W2087156935 cites W2030003797 @default.
- W2087156935 cites W2032488786 @default.
- W2087156935 cites W2032954096 @default.
- W2087156935 cites W2033097904 @default.
- W2087156935 cites W2036252653 @default.
- W2087156935 cites W2036501275 @default.
- W2087156935 cites W2037502742 @default.
- W2087156935 cites W2039391119 @default.
- W2087156935 cites W2040004413 @default.
- W2087156935 cites W2043367645 @default.
- W2087156935 cites W2043474151 @default.
- W2087156935 cites W2043544545 @default.
- W2087156935 cites W2043621919 @default.
- W2087156935 cites W2045780987 @default.
- W2087156935 cites W2046462848 @default.
- W2087156935 cites W2047471599 @default.
- W2087156935 cites W2048222013 @default.
- W2087156935 cites W2048829317 @default.
- W2087156935 cites W2051156910 @default.
- W2087156935 cites W2055889421 @default.
- W2087156935 cites W2057097322 @default.
- W2087156935 cites W2058478319 @default.
- W2087156935 cites W2060667349 @default.
- W2087156935 cites W2061033403 @default.
- W2087156935 cites W2063656463 @default.
- W2087156935 cites W2063897302 @default.
- W2087156935 cites W2064402331 @default.
- W2087156935 cites W2067890461 @default.
- W2087156935 cites W2094953080 @default.
- W2087156935 cites W2098326276 @default.
- W2087156935 cites W2101364707 @default.
- W2087156935 cites W2117006714 @default.
- W2087156935 cites W2124640583 @default.
- W2087156935 cites W2169669051 @default.
- W2087156935 cites W2477772245 @default.
- W2087156935 cites W4247609482 @default.
- W2087156935 doi "https://doi.org/10.1016/j.gca.2006.06.003" @default.
- W2087156935 hasPublicationYear "2006" @default.
- W2087156935 type Work @default.
- W2087156935 sameAs 2087156935 @default.
- W2087156935 citedByCount "175" @default.
- W2087156935 countsByYear W20871569352012 @default.
- W2087156935 countsByYear W20871569352013 @default.
- W2087156935 countsByYear W20871569352014 @default.
- W2087156935 countsByYear W20871569352015 @default.
- W2087156935 countsByYear W20871569352016 @default.
- W2087156935 countsByYear W20871569352017 @default.
- W2087156935 countsByYear W20871569352018 @default.
- W2087156935 countsByYear W20871569352019 @default.
- W2087156935 countsByYear W20871569352020 @default.
- W2087156935 countsByYear W20871569352021 @default.
- W2087156935 countsByYear W20871569352022 @default.
- W2087156935 countsByYear W20871569352023 @default.
- W2087156935 crossrefType "journal-article" @default.
- W2087156935 hasAuthorship W2087156935A5010330660 @default.
- W2087156935 hasAuthorship W2087156935A5032247296 @default.
- W2087156935 hasAuthorship W2087156935A5051890912 @default.
- W2087156935 hasAuthorship W2087156935A5062527109 @default.
- W2087156935 hasAuthorship W2087156935A5067916549 @default.
- W2087156935 hasAuthorship W2087156935A5076521713 @default.
- W2087156935 hasConcept C100402318 @default.
- W2087156935 hasConcept C107872376 @default.
- W2087156935 hasConcept C108970007 @default.
- W2087156935 hasConcept C121332964 @default.
- W2087156935 hasConcept C148898269 @default.
- W2087156935 hasConcept C178790620 @default.
- W2087156935 hasConcept C185592680 @default.
- W2087156935 hasConcept C2779679103 @default.