Matches in SemOpenAlex for { <https://semopenalex.org/work/W2087173876> ?p ?o ?g. }
- W2087173876 endingPage "35310" @default.
- W2087173876 startingPage "35303" @default.
- W2087173876 abstract "Very small amounts of MHC class II-peptide complexes expressed on the surface of antigen-presenting cells (APCs) are capable of stimulating antigen-specific CD4 T cells. There is intense interest to elucidate the molecular mechanisms by which these small amounts of MHC-II can cluster, cross-link T cell receptors, and promote T cell proliferation. We now demonstrate that a significant fraction of the total pool of MHC-II molecules on the surface of dendritic cells is physically associated in macromolecular aggregates. These MHC-II/MHC-II interactions have been probed by co-immunoprecipitation analysis of the MHC-II I-A molecule with the related I-E molecule. These molecular associations are maintained in gentle detergents but are disrupted in harsh detergents such as Triton X-100. MHC-II I-A/I-E interactions are disrupted when plasma membrane cholesterol is extracted using methyl β-cyclodextrin, suggesting that lipid raft microdomains are important mediators of these MHC-II interactions. Although it has been proposed that tetraspanin proteins regulate molecular clustering, aggregation, and co-immunoprecipitation in APCs, genetic deletion of the tetraspanin family members CD9 or CD81 had no effect on MHC-II I-A/I-E binding. These data demonstrate that the presence of distinct forms of MHC-II with plasma membrane lipid rafts is required for MHC-II aggregation in APCs and provides a molecular mechanism allowing dendritic cells expressing small amounts of MHC-II-peptide complexes to cross-link and stimulate CD4 T cells. Very small amounts of MHC class II-peptide complexes expressed on the surface of antigen-presenting cells (APCs) are capable of stimulating antigen-specific CD4 T cells. There is intense interest to elucidate the molecular mechanisms by which these small amounts of MHC-II can cluster, cross-link T cell receptors, and promote T cell proliferation. We now demonstrate that a significant fraction of the total pool of MHC-II molecules on the surface of dendritic cells is physically associated in macromolecular aggregates. These MHC-II/MHC-II interactions have been probed by co-immunoprecipitation analysis of the MHC-II I-A molecule with the related I-E molecule. These molecular associations are maintained in gentle detergents but are disrupted in harsh detergents such as Triton X-100. MHC-II I-A/I-E interactions are disrupted when plasma membrane cholesterol is extracted using methyl β-cyclodextrin, suggesting that lipid raft microdomains are important mediators of these MHC-II interactions. Although it has been proposed that tetraspanin proteins regulate molecular clustering, aggregation, and co-immunoprecipitation in APCs, genetic deletion of the tetraspanin family members CD9 or CD81 had no effect on MHC-II I-A/I-E binding. These data demonstrate that the presence of distinct forms of MHC-II with plasma membrane lipid rafts is required for MHC-II aggregation in APCs and provides a molecular mechanism allowing dendritic cells expressing small amounts of MHC-II-peptide complexes to cross-link and stimulate CD4 T cells." @default.
- W2087173876 created "2016-06-24" @default.
- W2087173876 creator A5015567000 @default.
- W2087173876 creator A5029421637 @default.
- W2087173876 date "2010-11-01" @default.
- W2087173876 modified "2023-09-30" @default.
- W2087173876 title "Distinct MHC Class II Molecules Are Associated on the Dendritic Cell Surface in Cholesterol-dependent Membrane Microdomains" @default.
- W2087173876 cites W1481120512 @default.
- W2087173876 cites W1494610598 @default.
- W2087173876 cites W1503369148 @default.
- W2087173876 cites W1539488492 @default.
- W2087173876 cites W1620395613 @default.
- W2087173876 cites W1643239212 @default.
- W2087173876 cites W1661544713 @default.
- W2087173876 cites W1929719444 @default.
- W2087173876 cites W1968194439 @default.
- W2087173876 cites W1968463439 @default.
- W2087173876 cites W1976478844 @default.
- W2087173876 cites W1985349820 @default.
- W2087173876 cites W1986849641 @default.
- W2087173876 cites W1993027053 @default.
- W2087173876 cites W1998459062 @default.
- W2087173876 cites W1999436383 @default.
- W2087173876 cites W2010883684 @default.
- W2087173876 cites W2014115532 @default.
- W2087173876 cites W2018042005 @default.
- W2087173876 cites W2021211941 @default.
- W2087173876 cites W2026051220 @default.
- W2087173876 cites W2045017588 @default.
- W2087173876 cites W2046265547 @default.
- W2087173876 cites W2047710181 @default.
- W2087173876 cites W2050105242 @default.
- W2087173876 cites W2052872544 @default.
- W2087173876 cites W2055567106 @default.
- W2087173876 cites W2060572354 @default.
- W2087173876 cites W2062619192 @default.
- W2087173876 cites W2063186096 @default.
- W2087173876 cites W2079515412 @default.
- W2087173876 cites W2085549346 @default.
- W2087173876 cites W2086358590 @default.
- W2087173876 cites W2092233799 @default.
- W2087173876 cites W2092235636 @default.
- W2087173876 cites W2093306132 @default.
- W2087173876 cites W2102139473 @default.
- W2087173876 cites W2117032258 @default.
- W2087173876 cites W2117299062 @default.
- W2087173876 cites W2121936687 @default.
- W2087173876 cites W2127556321 @default.
- W2087173876 cites W2128519954 @default.
- W2087173876 cites W2129396527 @default.
- W2087173876 cites W2132543766 @default.
- W2087173876 cites W2136558879 @default.
- W2087173876 cites W2138059603 @default.
- W2087173876 cites W2139846514 @default.
- W2087173876 cites W2150745254 @default.
- W2087173876 cites W2152220514 @default.
- W2087173876 cites W2164630010 @default.
- W2087173876 doi "https://doi.org/10.1074/jbc.m110.147793" @default.
- W2087173876 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2975154" @default.
- W2087173876 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20833718" @default.
- W2087173876 hasPublicationYear "2010" @default.
- W2087173876 type Work @default.
- W2087173876 sameAs 2087173876 @default.
- W2087173876 citedByCount "24" @default.
- W2087173876 countsByYear W20871738762012 @default.
- W2087173876 countsByYear W20871738762013 @default.
- W2087173876 countsByYear W20871738762014 @default.
- W2087173876 countsByYear W20871738762015 @default.
- W2087173876 countsByYear W20871738762016 @default.
- W2087173876 countsByYear W20871738762017 @default.
- W2087173876 countsByYear W20871738762018 @default.
- W2087173876 countsByYear W20871738762019 @default.
- W2087173876 countsByYear W20871738762021 @default.
- W2087173876 countsByYear W20871738762023 @default.
- W2087173876 crossrefType "journal-article" @default.
- W2087173876 hasAuthorship W2087173876A5015567000 @default.
- W2087173876 hasAuthorship W2087173876A5029421637 @default.
- W2087173876 hasBestOaLocation W20871738761 @default.
- W2087173876 hasConcept C104317684 @default.
- W2087173876 hasConcept C119997001 @default.
- W2087173876 hasConcept C147483822 @default.
- W2087173876 hasConcept C1491633281 @default.
- W2087173876 hasConcept C170627219 @default.
- W2087173876 hasConcept C185592680 @default.
- W2087173876 hasConcept C197695756 @default.
- W2087173876 hasConcept C203014093 @default.
- W2087173876 hasConcept C207936829 @default.
- W2087173876 hasConcept C2776090121 @default.
- W2087173876 hasConcept C2777208748 @default.
- W2087173876 hasConcept C2778814158 @default.
- W2087173876 hasConcept C55493867 @default.
- W2087173876 hasConcept C62478195 @default.
- W2087173876 hasConcept C71829478 @default.
- W2087173876 hasConcept C79266657 @default.
- W2087173876 hasConcept C86803240 @default.
- W2087173876 hasConcept C8891405 @default.
- W2087173876 hasConcept C95444343 @default.
- W2087173876 hasConceptScore W2087173876C104317684 @default.