Matches in SemOpenAlex for { <https://semopenalex.org/work/W2087314711> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2087314711 endingPage "1086" @default.
- W2087314711 startingPage "1081" @default.
- W2087314711 abstract "No AccessTechnical NoteFlow Structure of Low-Aspect-Ratio Rotating Wings from Dye VisualizationZakery R. Carr and Matthew J. RinguetteZakery R. CarrDepartment of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260*Postdoctoral Associate, Department of Mechanical and Aerospace Engineering, 318 Jarvis Hall. Member AIAA.Search for more papers by this author and Matthew J. RinguetteDepartment of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260†Assistant Professor, Department of Mechanical and Aerospace Engineering, 318 Jarvis Hall. Member AIAA.Search for more papers by this authorPublished Online:22 Apr 2014https://doi.org/10.2514/1.J052592SectionsView Full TextPDFPDF Plus ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Shyy W., Aono H., Chimakurthi S. K., Trizila P., Kang C. K., Cesnik C. E. S. and Liu H., “Recent Progress in Flapping Wing Aerodynamics and Aeroelasticity,” Progress in Aerospace Sciences, Vol. 46, No. 7, 2010, pp. 284–327. doi:https://doi.org/10.1016/j.paerosci.2010.01.001 PAESD6 0376-0421 CrossrefGoogle Scholar[2] Jones A. R. and Babinsky H., “Reynolds Number Effects on Leading Edge Vortex Development on a Waving Wing,” Experiments in Fluids, Vol. 51, No. 1, 2011, pp. 197–210. doi:https://doi.org/10.1007/s00348-010-1037-3 EXFLDU 0723-4864 CrossrefGoogle Scholar[3] Carr Z. R., Chen C. and Ringuette M. J., “Finite-Span Rotating Wings: Three-Dimensional Vortex Formation and Variations with Aspect Ratio,” Experiments in Fluids, Vol. 54, 2013. doi:https://doi.org/10.1007/s00348-012-1444-8 EXFLDU 0723-4864 CrossrefGoogle Scholar[4] Ansari S. A., Phillips N., Stabler G., Wilkins P. C., Żbikowski R. and Knowles K., “Experimental Investigation of Some Aspects of Insect-Like Flapping Flight Aerodynamics for Application to Micro Air Vehicles,” Experiments in Fluids, Vol. 46, No. 5, 2009, pp. 777–798. doi:https://doi.org/10.1007/s00348-009-0661-2 EXFLDU 0723-4864 CrossrefGoogle Scholar[5] Stanley D. and Altman A., “Experiments in Vortex Formation on Flapping Flat Plates,” 47th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2009-389, 2009, pp. 1–15. LinkGoogle Scholar[6] Jones A. R., Pitt Ford C. W. and Babinsky H., “Three-Dimensional Effects on Sliding and Waving Wings,” Journal of Aircraft, Vol. 48, No. 2, 2011, pp. 633–644. doi:https://doi.org/10.2514/1.C031184 JAIRAM 0021-8669 LinkGoogle Scholar[7] Ozen C. A. and Rockwell D., “Flow Structure on a Rotating Plate,” Experiments in Fluids, Vol. 52, No. 1, 2012, pp. 207–223. doi:https://doi.org/10.1007/s00348-011-1215-y EXFLDU 0723-4864 CrossrefGoogle Scholar[8] Poelma C., Dickson W. B. and Dickinson M. H., “Time-Resolved Reconstruction of the Full Velocity Field Around a Dynamically-Scaled Flapping Wing,” Experiments in Fluids, Vol. 41, No. 2, 2006, pp. 213–225. doi:https://doi.org/10.1007/s00348-006-0172-3 EXFLDU 0723-4864 CrossrefGoogle Scholar[9] Carr Z., Chen C. and Ringuette M. J., “Effect of Aspect Ratio on the Three-Dimensional Vortex Formation of Rotating Flat-Plate Wings,” 50th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2012-0912, 2012, pp. 1–26. LinkGoogle Scholar[10] Wojcik C. J. and Buchholz J. H. J., “Dynamics of Spanwise Vorticity on a Rotating Flat Plate,” 50th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2012-0915, 2012, pp. 1–17. Google Scholar[11] Ozen C. A. and Rockwell D., “Three-Dimensional Vortex Structure on a Rotating Wing,” Journal of Fluid Mechanics, Vol. 707, 2012, pp. 541–550. doi:https://doi.org/10.1017/jfm.2012.298 JFLSA7 0022-1120 CrossrefGoogle Scholar[12] Kim D. and Gharib M., “Experimental Study of Three-Dimensional Vortex Structures in Translating and Rotating Plates,” Experiments in Fluids, Vol. 49, No. 1, 2010, pp. 329–339. doi:https://doi.org/10.1007/s00348-010-0872-6 EXFLDU 0723-4864 CrossrefGoogle Scholar[13] Cheng B., Sane S. P., Barbera G., Troolin D. R., Strand T. and Deng X., “Three-Dimensional Flow Visualization and Vorticity Dynamics in Revolving Wings,” Experiments in Fluids, Vol. 54, No. 1, 2013, pp. 1–12. doi:https://doi.org/10.1007/s00348-012-1423-0 EXFLDU 0723-4864 CrossrefGoogle Scholar[14] Wahidi R. and Hubner J. P., “Description of the Vortices and Vorticity Around a Low-Aspect Ratio Flat Plate,” 51st AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2013-0834, 2013, pp. 1–15. LinkGoogle Scholar[15] Lentink D. and Dickinson M. H., “Rotational Accelerations Stabilize Leading Edge Vortices on Revolving Fly Wings,” Journal of Experimental Biology, Vol. 212, No. 16, 2009, pp. 2705–2719. doi:https://doi.org/10.1242/jeb.022269 JEBIAM 0022-0949 CrossrefGoogle Scholar[16] Schlueter K., Jones A. R., Granlund K. and Ol M., “Force Coefficients of Low Reynolds Number Rotating Wings,” 51st AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2013-0832, 2013, pp. 1–11. LinkGoogle Scholar[17] Jardin T., Farcy A. and David L., “Three-Dimensional Effects in Hovering Flapping Flight,” Journal of Fluid Mechanics, Vol. 702, 2012, pp. 102–125. doi:https://doi.org/10.1017/jfm.2012.163 JFLSA7 0022-1120 CrossrefGoogle Scholar[18] Schlueter K. and Jones A. R., “Effects of Wall Boundaries on the Flow Field of a Rotating Wing,” 30th AIAA Applied Aerodynamics Conference, AIAA Paper 2012-2776, 2012, pp. 1–15. LinkGoogle Scholar[19] Garmann D. J., Visbal M. R. and Orkwis P. D., “Investigation of Aspect Ratio and Dynamic Effects Due to Rotation for a Revolving Wing Using High-Fidelity Simulation,” 51st AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2013-0086, 2013, pp. 1–23. LinkGoogle Scholar[20] Garmann D. J., Visbal M. R. and Orkwis P. D., “Three-Dimensional Flow Structure and Aerodynamic Loading on a Revolving Wing,” Physics of Fluids, Vol. 25, No. 3, 2013, pp. 1–27. doi:https://doi.org/10.1063/1.4794753 1070-6631 CrossrefGoogle Scholar[21] DeVoria A. C. and Ringuette M. J., “Vortex Formation and Saturation for Low-Aspect-Ratio Rotating Flat-Plate Fins,” Experiments in Fluids, Vol. 52, No. 2, 2012, pp. 441–462. doi:https://doi.org/10.1007/s00348-011-1230-z EXFLDU 0723-4864 CrossrefGoogle Scholar[22] Dudley R., Biomechanics of Insect Flight, Princeton Univ. Press, Princeton, NJ, 1999, Chaps. 2–3. Google Scholar[23] Wang Z. J., “Dissecting Insect Flight,” Annual Review of Fluid Mechanics, Vol. 37, No. 1, 2005, pp. 183–210. doi:https://doi.org/10.1146/annurev.fluid.36.050802.121940 ARVFA3 0066-4189 CrossrefGoogle Scholar[24] Ellington C. P., “Aerodynamics of Hovering Insect Flight. III. Kinematics,” Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, Vol. 305, No. 1122, 1984, pp. 41–78. doi:10.1098/rstb.1984.0051 PTRBAE 0962-8436 CrossrefGoogle Scholar[25] Wang Z. J. and Russell D., “Effect of Forewing and Hindwing Interactions on Aerodynamic Forces and Power in Hovering Dragonfly Flight,” Physical Review Letters, Vol. 99, No. 14, 2007, pp. 1–4. doi:https://doi.org/10.1103/PhysRevLett.99.148101 PRLTAO 0031-9007 CrossrefGoogle Scholar[26] Tobalske B. W., Warrick D. R., Clark C. J., Powers D. R., Hedrick T. L., Hyder G. A. and Biewener A. A., “Three-Dimensional Kinematics of Hummingbird Flight,” Journal of Experimental Biology, Vol. 210, No. 13, 2007, pp. 2368–2382. doi:https://doi.org/10.1242/jeb.005686 JEBIAM 0022-0949 CrossrefGoogle Scholar[27] Singh B. and Chopra I., “Insect-Based Hover-Capable Flapping Wings for Micro Air Vehicles: Experiments and Analysis,” AIAA Journal, Vol. 46, No. 9, 2008, pp. 2115–2135. doi:https://doi.org/10.2514/1.28192 AIAJAH 0001-1452 LinkGoogle Scholar[28] Merzkirch W., Flow Visualization, 2nd ed., Academic Press, New York, 1987, pp. 17–24. Google Scholar[29] Harbig R. R., Sheridan J. and Thompson M. C., “Reynolds Number and Aspect Ratio Effects on the Leading-Edge Vortex for Rotating Insect Wing Planforms,” Journal of Fluid Mechanics, Vol. 717, 2013, pp. 166–192. doi:https://doi.org/10.1017/jfm.2012.565 JFLSA7 0022-1120 CrossrefGoogle Scholar[30] Pullin D. I. and Perry A. E., “Some Flow Visualization Experiments on the Starting Vortex,” Journal of Fluid Mechanics, Vol. 97, No. 2, 1980, pp. 239–255. doi:https://doi.org/10.1017/S0022112080002546 JFLSA7 0022-1120 CrossrefGoogle Scholar[31] Lian Q. X. and Huang Z., “Starting Flow and Structures of the Starting Vortex Behind Bluff Bodies with Sharp Edges,” Experiments in Fluids, Vol. 8, Nos. 1–2, 1989, pp. 95–103. doi:https://doi.org/10.1007/BF00203070 EXFLDU 0723-4864 CrossrefGoogle Scholar[32] Koumoutsakos P. and Shiels D., “Simulations of the Viscous Flow Normal to an Impulsively Started and Uniformly Accelerated Flat Plate,” Journal of Fluid Mechanics, Vol. 328, No. 1, 1996, pp. 177–227. doi:https://doi.org/10.1017/S0022112096008695 JFLSA7 0022-1120 CrossrefGoogle Scholar[33] Ramasamy M. and Leishman J. G., “Phase-Locked Particle Image Velocimetry Measurements of a Flapping Wing,” Journal of Aircraft, Vol. 43, No. 6, 2006, pp. 1867–1875. doi:https://doi.org/10.2514/1.21347 JAIRAM 0021-8669 LinkGoogle Scholar[34] Viswanath K. and Tafti D. K., “Effect of Stroke Deviation on Forward Flapping Flight,” 50th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2012-0297, 2012, pp. 1–19. LinkGoogle Scholar[35] Mayo D. B. and Jones A. R., “Evolution and Breakdown of a Leading Edge Vortex on a Rotating Wing,” 51st AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2013-0843, 2013, pp. 1–17. LinkGoogle Scholar[36] Lucca-Negro O. and O’Doherty T., “Vortex Breakdown: A Review,” Progress in Energy and Combustion Science, Vol. 27, No. 4, 2001, pp. 431–481. doi:https://doi.org/10.1016/S0360-1285(00)00022-8 PECSDO 0360-1285 CrossrefGoogle Scholar Previous article Next article" @default.
- W2087314711 created "2016-06-24" @default.
- W2087314711 creator A5077220962 @default.
- W2087314711 creator A5085842189 @default.
- W2087314711 date "2014-05-01" @default.
- W2087314711 modified "2023-10-16" @default.
- W2087314711 title "Flow Structure of Low-Aspect-Ratio Rotating Wings from Dye Visualization" @default.
- W2087314711 cites W1967963933 @default.
- W2087314711 cites W1968772150 @default.
- W2087314711 cites W1968785762 @default.
- W2087314711 cites W1973842373 @default.
- W2087314711 cites W1989249387 @default.
- W2087314711 cites W2000727892 @default.
- W2087314711 cites W2011078912 @default.
- W2087314711 cites W2014192334 @default.
- W2087314711 cites W2019482023 @default.
- W2087314711 cites W2026403792 @default.
- W2087314711 cites W2027718197 @default.
- W2087314711 cites W2037234162 @default.
- W2087314711 cites W2067909757 @default.
- W2087314711 cites W2069414577 @default.
- W2087314711 cites W2069642344 @default.
- W2087314711 cites W2071014945 @default.
- W2087314711 cites W2079186237 @default.
- W2087314711 cites W2085756182 @default.
- W2087314711 cites W2094747646 @default.
- W2087314711 cites W2104313918 @default.
- W2087314711 cites W2109207536 @default.
- W2087314711 cites W2122882691 @default.
- W2087314711 cites W2139304766 @default.
- W2087314711 cites W2141956782 @default.
- W2087314711 cites W2151133822 @default.
- W2087314711 cites W2165075897 @default.
- W2087314711 cites W2312436477 @default.
- W2087314711 cites W2317972734 @default.
- W2087314711 cites W2318736503 @default.
- W2087314711 cites W2320248981 @default.
- W2087314711 cites W2321278437 @default.
- W2087314711 cites W2330074675 @default.
- W2087314711 cites W2330222275 @default.
- W2087314711 doi "https://doi.org/10.2514/1.j052592" @default.
- W2087314711 hasPublicationYear "2014" @default.
- W2087314711 type Work @default.
- W2087314711 sameAs 2087314711 @default.
- W2087314711 citedByCount "9" @default.
- W2087314711 countsByYear W20873147112014 @default.
- W2087314711 countsByYear W20873147112015 @default.
- W2087314711 countsByYear W20873147112016 @default.
- W2087314711 countsByYear W20873147112017 @default.
- W2087314711 countsByYear W20873147112018 @default.
- W2087314711 countsByYear W20873147112022 @default.
- W2087314711 crossrefType "journal-article" @default.
- W2087314711 hasAuthorship W2087314711A5077220962 @default.
- W2087314711 hasAuthorship W2087314711A5085842189 @default.
- W2087314711 hasConcept C121332964 @default.
- W2087314711 hasConcept C127413603 @default.
- W2087314711 hasConcept C159985019 @default.
- W2087314711 hasConcept C192562407 @default.
- W2087314711 hasConcept C2524010 @default.
- W2087314711 hasConcept C33923547 @default.
- W2087314711 hasConcept C36464697 @default.
- W2087314711 hasConcept C38349280 @default.
- W2087314711 hasConcept C57879066 @default.
- W2087314711 hasConcept C78519656 @default.
- W2087314711 hasConcept C82558694 @default.
- W2087314711 hasConcept C83893533 @default.
- W2087314711 hasConceptScore W2087314711C121332964 @default.
- W2087314711 hasConceptScore W2087314711C127413603 @default.
- W2087314711 hasConceptScore W2087314711C159985019 @default.
- W2087314711 hasConceptScore W2087314711C192562407 @default.
- W2087314711 hasConceptScore W2087314711C2524010 @default.
- W2087314711 hasConceptScore W2087314711C33923547 @default.
- W2087314711 hasConceptScore W2087314711C36464697 @default.
- W2087314711 hasConceptScore W2087314711C38349280 @default.
- W2087314711 hasConceptScore W2087314711C57879066 @default.
- W2087314711 hasConceptScore W2087314711C78519656 @default.
- W2087314711 hasConceptScore W2087314711C82558694 @default.
- W2087314711 hasConceptScore W2087314711C83893533 @default.
- W2087314711 hasIssue "5" @default.
- W2087314711 hasLocation W20873147111 @default.
- W2087314711 hasOpenAccess W2087314711 @default.
- W2087314711 hasPrimaryLocation W20873147111 @default.
- W2087314711 hasRelatedWork W1548835789 @default.
- W2087314711 hasRelatedWork W1566855994 @default.
- W2087314711 hasRelatedWork W1998227569 @default.
- W2087314711 hasRelatedWork W2038876654 @default.
- W2087314711 hasRelatedWork W2089163349 @default.
- W2087314711 hasRelatedWork W2114784448 @default.
- W2087314711 hasRelatedWork W2145403698 @default.
- W2087314711 hasRelatedWork W2362054947 @default.
- W2087314711 hasRelatedWork W2390421025 @default.
- W2087314711 hasRelatedWork W2602068266 @default.
- W2087314711 hasVolume "52" @default.
- W2087314711 isParatext "false" @default.
- W2087314711 isRetracted "false" @default.
- W2087314711 magId "2087314711" @default.
- W2087314711 workType "article" @default.