Matches in SemOpenAlex for { <https://semopenalex.org/work/W2087398379> ?p ?o ?g. }
- W2087398379 endingPage "2928" @default.
- W2087398379 startingPage "2926" @default.
- W2087398379 abstract "Advances in selectivity: The use of chiral phosphoramidite ligands in asymmetric Pd-catalyzed [3+2] cycloadditions of trimethylenemethane derivatives affords exo-methylenecyclopentanes. This type of reaction has been used to prepare diverse compounds such as pyrrolidines and spirocyclic oxindolic cyclopentanes in good yields and with excellent selectivity (see scheme). Cycloaddition reactions are among the most powerful and efficient methods for the construction of rings. Unfortunately, unactivated substrates usually require extreme reaction conditions, such as high temperatures and pressures, in order to achieve good yield of the cycloadduct. Transition-metal catalysts provide new opportunities for highly selective cycloaddition reactions. These novel reactions are possible as the complexation of the metal to the substrates temporarily polarizes and activates the otherwise unreactive species.1 In addition to the rate enhancements observed in the presence of the metal catalyst, the opportunity to achieve asymmetric transformations by the use of chiral ligands is another attractive feature of this strategy. Since natural products containing five-membered rings are widespread, much attention has been directed to developing methods for their construction.2 A number of metal-catalyzed cycloadditions have been developed for the formation of five-membered rings (Scheme 1).3–13 Formation of five-membered rings by various metal-catalyzed cycloadditions. TMS=trimethylsilyl. Trost and co-workers reported the first examples of Pd-catalyzed trimethylenemethane (TMM) [3+2] cycloadditions in 1979.7a Since then, various aspects of the cycloadditions have been studied, including chemo-, regio- and stereoselectivites,7b–7e intramolecular7f,7g and heterocyclic7h,7i variants, and applications in the total synthesis of natural products.7j–7l The investigation of the asymmetric version for control over absolute stereochemistry was limited to the use of chiral auxiliaries.7m In 1989, Hayashi's group reported the first examples of the asymmetric Pd-catalyzed cycloadditions of this type; however, the level of asymmetric induction was only low to moderate (4–78 % ee).14 The major difficulty in designing a catalyst for this reaction is that the initial nucleophilic attack of the zwitterionic intermediate to the alkene (which is believed to be the selectivity-determining step) occurs distal to the coordinated chiral ligand on the palladium. When Trost and co-workers recently used bulky chiral phosphoramidite ligands (Figure 1) to overcome this problem, high levels of asymmetric induction were observed for the Pd-catalyzed TMM [3+2] cycloadditions.8–10 For example, in the presence of 5 mol % of [Pd(dba)2] (dba=dibenzylideneacetone) and 10 mol % of chiral phosphoramidite ligand L1, 3-acetoxy-2-trimethylsilylmethyl-1-propene (1) reacted with the electron-deficient alkene 2 to provide the corresponding exo-methylenecyclopentane 3 in 79 % yield with a stereoselectivity of 84 % ee (Scheme 2).8 Under the same reaction conditions, the analogous reaction of benzylidene tetralone 4 gave the corresponding spirocyclic cycloadduct 5 in 94 % yield and 92 % ee (Scheme 2). Chiral phosphoramidite ligands. Asymmetric palladium-catalyzed [3+2] cycloadditions of TMM and alkenes 2 and 4. More recently, Trost and co-workers have expanded the scope of this approach to include the enantioselective construction of spirocyclic oxindolic cyclopentanes and pyrrolidines.9, 10 In the presence of 2.5 mol % of [Pd2(dba)3]⋅CHCl3 and 10 mol % of chiral ligand L2 or L3, asymmetric Pd-catalyzed [3+2] cycloadditions of 3-alkylidenoxindolin-2-one 7 and the cyano-substituted TMM precursor 6 gave the corresponding cycloadducts, spirocyclic oxindolic cyclopentanes trans-8 and cis-9, in excellent yields and selectivities (Scheme 3).9 The ratio of the trans and cis [3+2] cycloadducts ranged from 1.3:1 to >20:1 depending on the choice of ligand as well as the structure of the 3-alkylidenoxindolin-2-ones. Enantiomeric excesses greater than 90 % were generally observed in these cycloadditions when chiral ligands L2 or L3 were employed. Interestingly, ligand L3 usually provided trans-8 as the major cycloadduct, while ligand L2 (which differs from ligand L3 only by the position of the naphthyl substituents) often gave cis-9 as the major product. Enantioselective construction of spirocyclic oxindolic cyclopentanes by asymmetric palladium-catalyzed [3+2] cycloadditions of TMM. The first examples of the asymmetric palladium-catalyzed [3+2] cycloadditions of TMM and imines were recently reported by Trost and co-workers (Scheme 4).10 In the presence of 5 mol % of [Pd(dba)2] and 10 mol % of the chiral ligand L2, imines 10 and 3-acetoxy-2-trimethylsilylmethyl-1-propene (1) were converted into the corresponding [3+2] cycloadducts, pyrrolidines 11, in good yields and high enantioselectivity (Scheme 4).10 Asymmetric palladium-catalyzed [3+2] cycloadditions of TMM and imines. Boc=tert-butoxycarbonyl. These studies on the asymmetric palladium-catalyzed [3+2] cycloadditions of TMM are very significant. They represent an important breakthrough in this area of research not only because it is the first time such a high level of asymmetric induction has been achieved for this type of reaction, but also because they provide a very efficient method for the asymmetric synthesis of carbocyclic and heterocyclic five-membered ring systems. Thus, the methodologies described will be extremely useful in the asymmetric synthesis of many biologically important natural products containing these ring systems. Finally, the concept of using bulky phosphoramidite ligands will also have a major impact on future research involving transition-metal-catalyzed cycloaddition reactions." @default.
- W2087398379 created "2016-06-24" @default.
- W2087398379 creator A5002560483 @default.
- W2087398379 creator A5007661435 @default.
- W2087398379 date "2008-04-01" @default.
- W2087398379 modified "2023-10-18" @default.
- W2087398379 title "Enantioselective Palladium-Catalyzed Trimethylenemethane [3+2] Cycloadditions" @default.
- W2087398379 cites W1979544068 @default.
- W2087398379 cites W1983074730 @default.
- W2087398379 cites W1991980693 @default.
- W2087398379 cites W2000266008 @default.
- W2087398379 cites W2007038095 @default.
- W2087398379 cites W2015686917 @default.
- W2087398379 cites W2022690423 @default.
- W2087398379 cites W2024618805 @default.
- W2087398379 cites W2026861873 @default.
- W2087398379 cites W2029266122 @default.
- W2087398379 cites W2030793699 @default.
- W2087398379 cites W2032552267 @default.
- W2087398379 cites W2049446153 @default.
- W2087398379 cites W2050185013 @default.
- W2087398379 cites W2051219289 @default.
- W2087398379 cites W2052493074 @default.
- W2087398379 cites W2057465184 @default.
- W2087398379 cites W2057904534 @default.
- W2087398379 cites W2062055198 @default.
- W2087398379 cites W2071921008 @default.
- W2087398379 cites W2076248855 @default.
- W2087398379 cites W2087828267 @default.
- W2087398379 cites W2101462419 @default.
- W2087398379 cites W2129377581 @default.
- W2087398379 cites W2153016371 @default.
- W2087398379 cites W2173477958 @default.
- W2087398379 cites W2949094988 @default.
- W2087398379 cites W2949287506 @default.
- W2087398379 cites W2949506191 @default.
- W2087398379 cites W2949689843 @default.
- W2087398379 cites W2949768043 @default.
- W2087398379 cites W2951030399 @default.
- W2087398379 cites W2951459061 @default.
- W2087398379 cites W2951810313 @default.
- W2087398379 cites W75320704 @default.
- W2087398379 doi "https://doi.org/10.1002/anie.200705481" @default.
- W2087398379 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18338416" @default.
- W2087398379 hasPublicationYear "2008" @default.
- W2087398379 type Work @default.
- W2087398379 sameAs 2087398379 @default.
- W2087398379 citedByCount "29" @default.
- W2087398379 countsByYear W20873983792012 @default.
- W2087398379 countsByYear W20873983792013 @default.
- W2087398379 countsByYear W20873983792014 @default.
- W2087398379 countsByYear W20873983792015 @default.
- W2087398379 countsByYear W20873983792018 @default.
- W2087398379 countsByYear W20873983792019 @default.
- W2087398379 countsByYear W20873983792020 @default.
- W2087398379 countsByYear W20873983792021 @default.
- W2087398379 countsByYear W20873983792022 @default.
- W2087398379 countsByYear W20873983792023 @default.
- W2087398379 crossrefType "journal-article" @default.
- W2087398379 hasAuthorship W2087398379A5002560483 @default.
- W2087398379 hasAuthorship W2087398379A5007661435 @default.
- W2087398379 hasBestOaLocation W20873983791 @default.
- W2087398379 hasConcept C106773901 @default.
- W2087398379 hasConcept C118792377 @default.
- W2087398379 hasConcept C146686406 @default.
- W2087398379 hasConcept C161790260 @default.
- W2087398379 hasConcept C178790620 @default.
- W2087398379 hasConcept C185592680 @default.
- W2087398379 hasConcept C21951064 @default.
- W2087398379 hasConcept C2779664164 @default.
- W2087398379 hasConcept C2780845461 @default.
- W2087398379 hasConcept C2909554657 @default.
- W2087398379 hasConcept C502130503 @default.
- W2087398379 hasConceptScore W2087398379C106773901 @default.
- W2087398379 hasConceptScore W2087398379C118792377 @default.
- W2087398379 hasConceptScore W2087398379C146686406 @default.
- W2087398379 hasConceptScore W2087398379C161790260 @default.
- W2087398379 hasConceptScore W2087398379C178790620 @default.
- W2087398379 hasConceptScore W2087398379C185592680 @default.
- W2087398379 hasConceptScore W2087398379C21951064 @default.
- W2087398379 hasConceptScore W2087398379C2779664164 @default.
- W2087398379 hasConceptScore W2087398379C2780845461 @default.
- W2087398379 hasConceptScore W2087398379C2909554657 @default.
- W2087398379 hasConceptScore W2087398379C502130503 @default.
- W2087398379 hasIssue "16" @default.
- W2087398379 hasLocation W20873983791 @default.
- W2087398379 hasLocation W20873983792 @default.
- W2087398379 hasOpenAccess W2087398379 @default.
- W2087398379 hasPrimaryLocation W20873983791 @default.
- W2087398379 hasRelatedWork W1984036917 @default.
- W2087398379 hasRelatedWork W2000266008 @default.
- W2087398379 hasRelatedWork W2020399351 @default.
- W2087398379 hasRelatedWork W2027894132 @default.
- W2087398379 hasRelatedWork W2037986904 @default.
- W2087398379 hasRelatedWork W2038773425 @default.
- W2087398379 hasRelatedWork W2051219289 @default.
- W2087398379 hasRelatedWork W2065521279 @default.
- W2087398379 hasRelatedWork W2399054115 @default.