Matches in SemOpenAlex for { <https://semopenalex.org/work/W2087609458> ?p ?o ?g. }
- W2087609458 endingPage "371" @default.
- W2087609458 startingPage "363" @default.
- W2087609458 abstract "The noradrenergic, dopaminergic, and serotonergic cell groups of the brain stem and caudal diencephalon, and their projections, were examined in neonatal and adult squirrel monkeys, rhesus monkeys, and stump-tail monkeys utilizing the Falck-Hillarp formaldehyde condensation reaction. The axonal pathways fluoresced in neonatal monkeys and permitted direct visualization of the major bundles. Cell groups in the ventral and dorsal tegmentum of the medulla and pons (A1, A2, A3, A7) gave rise to a ventral ascending catecholamine pathway which coursed through the ventral tegmentum of the brain stem. The locus coeruleus (A4, A6) gave rise to a dorsal ascending catecholamine pathway which coursed through the medial region of the tegmentum above the ventral pathway. Prominent catecholamine cell bodies (Acg) in the central gray of the midbrain, rostral to the locus coeruleus, gave rise to an ascending dorsal periventricular pathway which ran dorsally in the tegmentum; some fibers then rapidly coursed ventrally to join a confluence with other ascending brain stem catecholamine axonal projections. The catecholamine axons ran through the medial forebrain bundle in the lateral hypothalamus, and sent further projections into limbic forebrain and cortical structures. Dopaminergic cells of the ventral tegmental area gave rise to an ascending ventral periventricular system which coursed through the most ventromedial region of the tegmentum, entered the medial forebrain bundle, and further coursed into regions of frontal and cingulate cortex, and limbic forebrain regions. The substantia nigra and some lateral cells of the lateral ventral tegmental area sent axons through the most ventral regions of the tegmentum above, and within the substantia nigra. These axons coursed into the lateral hypothalamus adjacent to the other monoaminergic axons, and proceeded to move further lateral as they ascended rostrally. They ran through the internal capsule and projected into the caudate nucleus and putamen. A major descending periventricular catecholamine system was found in the dorsal and medial region of the tegmentum of the lower brain stem, projecting into the medulla and spinal cord. Only scattered fluorescent axons were found descending to the spinal cord through the ventral tegmentum. Other catecholamine cell groups were noted in one or more primate species; they were found within the solitary tract (i.e. group Ast), and directly beneath the aqueduct (i.e. group Aaq). The hypothalamic cell groups A11–A14 were found in the caudal hypothalamus. Except for the short projection of the arcuate nucleus (A 12) to the contact zone of the median eminence, these cells gave rise to scattered axons which formed no prominent bundles visible with fluorescence histochemistry.The serotonergic cell bodies were found in the raphe nuclei of the brain stem and adjacent tegmental fields, and gave rise to both ascending and descending pathways. Nuclei raphe obscurus (B2), pallidus (B1), and magnus (B3) gave rise to dorsal and ventral descending pathways which descended to the caudal brain stem and spinal cord in a paramedian position alongside the nuclei. Nuclei raphe ponds (B5) and dorsalis (B6, B7) gave rise to a dorsal ascending serotonergic pathway, while nucleus centralis superior (B8,B9) and associated serotonergic tegmental cells gave rise to a ventral ascending serotonergic pathway. The ascending pathways coursed through the medial forebrain bundle and further projected to numerous diencephalic and telencephalic nuclei and regions.The monoamine pathways are represented in coronal, sagittal, and horizontal sections. Although differences were noted among the species examined, the general outline of the cell groups and pathways was similar. However, the primate patterns differed in several ways from comparable systems in the rat.The local organization of primate and monoaminergic nuclei demonstrated several unique characteristics. All monoaminergic nuclei demonstrated transmitter histofluorescence in primary dendrites, and sometimes in secondary or even tertiary dendrites. Some of these dendrites formed large dendrite bundles (e.g. nuclei raphe obscurus and pallidus in the caudal medulla, nuclei raphe dorsalis and centralis superior in the rostral pons and caudal mesencephalon) which possessed dendrites from both fluorescent and non-fluorescent neurons. Smaller bundles of fluorescent dendrites also were found in the locus coeruleus (coursing across the tract of the mesencephalic nucleus of V) and in the pars reticulata of substantia nigra. Further characteristics of the dendritic arborizations of the major monoaminergic nuclei are described utilizing Golgi-Cox impregnanted material. Electron microscopic observations of the locus coeruleus, substantia nigra, and raphe nuclei revealed a direct apposition of the basement membrane of some capillaries with the plasma membrane of somas and dendrites. Golgi-Cox observations revealed tanycytes on the floor of the fourth ventricle whose shafts projected into the two major raphe dendrite bundles, locus coeruleus, and the A2 region. These observations suggest that local dendritic modulation may play an important role in the regulation of neuronal excitability of some of the monoamine cell groups, and that blood-borne or CSF-borne ligands may have ready access to receptor surfaces on some monoamine cells through the unique neuronal-vascular and tanycyte shaft relationships, respectively.Electron microscopy of the medullary and dorsal raphe nuclei, locus coeruleus, substantia nigra, and ventral tegmental area revealed the presence of numerous dendro-dendritic synapses, sometimes demonstrating membrane specializations or vesicles, but not both. Each nucleus possessed a significant population (50% or more) of cells with absent or extemely sparse axo-somatic synapses. Theses somas were invested with astrocytic processes or with extended regions of the somatic membranes of oligodendroglia. Most of the synapses on these cells were axo-dendritic or dendro-dendritic. The axo-dendritic synapses terminated on both spines and parent dendrites. Some of these neurons in the raphe nuclei were tentatively identified at the ultrastructural level as serotonergic, and in locus coeruleus as catecholaminergic, utilizing x-ray analytical electron microscopic examination of chromium-tagged, glutaraldehyde-condensed monoamines. These ultrastructural observations reinforce the important role of dendrites in these major monoaminergic nuclei for the integration of afferent information from incoming axons and from dendrites of both monoaminergic and non-monoaminergic cells." @default.
- W2087609458 created "2016-06-24" @default.
- W2087609458 creator A5004247887 @default.
- W2087609458 creator A5014576325 @default.
- W2087609458 creator A5090570126 @default.
- W2087609458 date "1974-02-01" @default.
- W2087609458 modified "2023-10-16" @default.
- W2087609458 title "Certain biochemical correlates of intense serotonin histofluorescence in the brain stem of the neonatal monkey" @default.
- W2087609458 cites W1762852805 @default.
- W2087609458 cites W1775749144 @default.
- W2087609458 cites W1963528627 @default.
- W2087609458 cites W1968454601 @default.
- W2087609458 cites W1969980707 @default.
- W2087609458 cites W1971512611 @default.
- W2087609458 cites W1984646993 @default.
- W2087609458 cites W1987067026 @default.
- W2087609458 cites W1988119768 @default.
- W2087609458 cites W2000070112 @default.
- W2087609458 cites W2005220094 @default.
- W2087609458 cites W2009291929 @default.
- W2087609458 cites W2016887103 @default.
- W2087609458 cites W2030731082 @default.
- W2087609458 cites W2039986090 @default.
- W2087609458 cites W2042931046 @default.
- W2087609458 cites W2050609053 @default.
- W2087609458 cites W2066007794 @default.
- W2087609458 cites W2068819290 @default.
- W2087609458 cites W2072479208 @default.
- W2087609458 cites W2073997713 @default.
- W2087609458 cites W2076328874 @default.
- W2087609458 cites W2086551867 @default.
- W2087609458 cites W2088727446 @default.
- W2087609458 cites W2096028417 @default.
- W2087609458 cites W2101809106 @default.
- W2087609458 cites W2150650360 @default.
- W2087609458 doi "https://doi.org/10.1016/0006-8993(74)90290-x" @default.
- W2087609458 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/4220031" @default.
- W2087609458 hasPublicationYear "1974" @default.
- W2087609458 type Work @default.
- W2087609458 sameAs 2087609458 @default.
- W2087609458 citedByCount "10" @default.
- W2087609458 countsByYear W20876094582016 @default.
- W2087609458 crossrefType "journal-article" @default.
- W2087609458 hasAuthorship W2087609458A5004247887 @default.
- W2087609458 hasAuthorship W2087609458A5014576325 @default.
- W2087609458 hasAuthorship W2087609458A5090570126 @default.
- W2087609458 hasConcept C105702510 @default.
- W2087609458 hasConcept C137183658 @default.
- W2087609458 hasConcept C169760540 @default.
- W2087609458 hasConcept C170493617 @default.
- W2087609458 hasConcept C24566897 @default.
- W2087609458 hasConcept C2775864247 @default.
- W2087609458 hasConcept C2776669363 @default.
- W2087609458 hasConcept C2777865548 @default.
- W2087609458 hasConcept C2778468602 @default.
- W2087609458 hasConcept C2778655484 @default.
- W2087609458 hasConcept C2778897929 @default.
- W2087609458 hasConcept C2779715522 @default.
- W2087609458 hasConcept C2780948874 @default.
- W2087609458 hasConcept C37000724 @default.
- W2087609458 hasConcept C513476851 @default.
- W2087609458 hasConcept C529278444 @default.
- W2087609458 hasConcept C552161191 @default.
- W2087609458 hasConcept C55493867 @default.
- W2087609458 hasConcept C86803240 @default.
- W2087609458 hasConceptScore W2087609458C105702510 @default.
- W2087609458 hasConceptScore W2087609458C137183658 @default.
- W2087609458 hasConceptScore W2087609458C169760540 @default.
- W2087609458 hasConceptScore W2087609458C170493617 @default.
- W2087609458 hasConceptScore W2087609458C24566897 @default.
- W2087609458 hasConceptScore W2087609458C2775864247 @default.
- W2087609458 hasConceptScore W2087609458C2776669363 @default.
- W2087609458 hasConceptScore W2087609458C2777865548 @default.
- W2087609458 hasConceptScore W2087609458C2778468602 @default.
- W2087609458 hasConceptScore W2087609458C2778655484 @default.
- W2087609458 hasConceptScore W2087609458C2778897929 @default.
- W2087609458 hasConceptScore W2087609458C2779715522 @default.
- W2087609458 hasConceptScore W2087609458C2780948874 @default.
- W2087609458 hasConceptScore W2087609458C37000724 @default.
- W2087609458 hasConceptScore W2087609458C513476851 @default.
- W2087609458 hasConceptScore W2087609458C529278444 @default.
- W2087609458 hasConceptScore W2087609458C552161191 @default.
- W2087609458 hasConceptScore W2087609458C55493867 @default.
- W2087609458 hasConceptScore W2087609458C86803240 @default.
- W2087609458 hasIssue "2" @default.
- W2087609458 hasLocation W20876094581 @default.
- W2087609458 hasLocation W20876094582 @default.
- W2087609458 hasOpenAccess W2087609458 @default.
- W2087609458 hasPrimaryLocation W20876094581 @default.
- W2087609458 hasRelatedWork W1853268599 @default.
- W2087609458 hasRelatedWork W1980715865 @default.
- W2087609458 hasRelatedWork W1982824588 @default.
- W2087609458 hasRelatedWork W2009065642 @default.
- W2087609458 hasRelatedWork W2055371592 @default.
- W2087609458 hasRelatedWork W2057521422 @default.
- W2087609458 hasRelatedWork W2059324182 @default.
- W2087609458 hasRelatedWork W2079665797 @default.
- W2087609458 hasRelatedWork W2517405466 @default.