Matches in SemOpenAlex for { <https://semopenalex.org/work/W2087624748> ?p ?o ?g. }
- W2087624748 endingPage "82" @default.
- W2087624748 startingPage "66" @default.
- W2087624748 abstract "Variance-based sensitivity analysis has been widely studied and asserted itself among practitioners. Monte Carlo simulation methods are well developed in the calculation of variance-based sensitivity indices but they do not make full use of each model run. Recently, several works mentioned a scatter-plot partitioning method to estimate the variance-based sensitivity indices from given data, where a single bunch of samples is sufficient to estimate all the sensitivity indices. This paper focuses on the space-partition method in the estimation of variance-based sensitivity indices, and its convergence and other performances are investigated. Since the method heavily depends on the partition scheme, the influence of the partition scheme is discussed and the optimal partition scheme is proposed based on the minimized estimator׳s variance. A decomposition and integration procedure is proposed to improve the estimation quality for higher order sensitivity indices. The proposed space-partition method is compared with the more traditional method and test cases show that it outperforms the traditional one." @default.
- W2087624748 created "2016-06-24" @default.
- W2087624748 creator A5028345316 @default.
- W2087624748 creator A5041608015 @default.
- W2087624748 creator A5060249465 @default.
- W2087624748 date "2014-11-01" @default.
- W2087624748 modified "2023-10-18" @default.
- W2087624748 title "Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study" @default.
- W2087624748 cites W1973823819 @default.
- W2087624748 cites W1979362125 @default.
- W2087624748 cites W1994080277 @default.
- W2087624748 cites W1998634089 @default.
- W2087624748 cites W2006037565 @default.
- W2087624748 cites W2020052620 @default.
- W2087624748 cites W2026645785 @default.
- W2087624748 cites W2029767409 @default.
- W2087624748 cites W2037243764 @default.
- W2087624748 cites W2044582942 @default.
- W2087624748 cites W2044639673 @default.
- W2087624748 cites W2045542565 @default.
- W2087624748 cites W2053726581 @default.
- W2087624748 cites W2055935901 @default.
- W2087624748 cites W2058550542 @default.
- W2087624748 cites W2063847981 @default.
- W2087624748 cites W2068068744 @default.
- W2087624748 cites W2077774447 @default.
- W2087624748 cites W2079851171 @default.
- W2087624748 cites W2081375966 @default.
- W2087624748 cites W2083166992 @default.
- W2087624748 cites W2085017301 @default.
- W2087624748 cites W2087040335 @default.
- W2087624748 cites W2088765131 @default.
- W2087624748 cites W2092047866 @default.
- W2087624748 cites W2097441841 @default.
- W2087624748 cites W2101589741 @default.
- W2087624748 cites W2111046434 @default.
- W2087624748 cites W2113337191 @default.
- W2087624748 cites W2151868609 @default.
- W2087624748 cites W2159473410 @default.
- W2087624748 cites W2163792679 @default.
- W2087624748 cites W2568283272 @default.
- W2087624748 doi "https://doi.org/10.1016/j.ress.2014.06.013" @default.
- W2087624748 hasPublicationYear "2014" @default.
- W2087624748 type Work @default.
- W2087624748 sameAs 2087624748 @default.
- W2087624748 citedByCount "15" @default.
- W2087624748 countsByYear W20876247482016 @default.
- W2087624748 countsByYear W20876247482017 @default.
- W2087624748 countsByYear W20876247482018 @default.
- W2087624748 countsByYear W20876247482019 @default.
- W2087624748 countsByYear W20876247482020 @default.
- W2087624748 countsByYear W20876247482021 @default.
- W2087624748 countsByYear W20876247482023 @default.
- W2087624748 crossrefType "journal-article" @default.
- W2087624748 hasAuthorship W2087624748A5028345316 @default.
- W2087624748 hasAuthorship W2087624748A5041608015 @default.
- W2087624748 hasAuthorship W2087624748A5060249465 @default.
- W2087624748 hasConcept C105795698 @default.
- W2087624748 hasConcept C108311543 @default.
- W2087624748 hasConcept C11413529 @default.
- W2087624748 hasConcept C114614502 @default.
- W2087624748 hasConcept C121955636 @default.
- W2087624748 hasConcept C126255220 @default.
- W2087624748 hasConcept C127413603 @default.
- W2087624748 hasConcept C144133560 @default.
- W2087624748 hasConcept C152587130 @default.
- W2087624748 hasConcept C162324750 @default.
- W2087624748 hasConcept C185429906 @default.
- W2087624748 hasConcept C19499675 @default.
- W2087624748 hasConcept C196083921 @default.
- W2087624748 hasConcept C21200559 @default.
- W2087624748 hasConcept C24326235 @default.
- W2087624748 hasConcept C2777303404 @default.
- W2087624748 hasConcept C28826006 @default.
- W2087624748 hasConcept C33923547 @default.
- W2087624748 hasConcept C42812 @default.
- W2087624748 hasConcept C50522688 @default.
- W2087624748 hasConcept C99476002 @default.
- W2087624748 hasConceptScore W2087624748C105795698 @default.
- W2087624748 hasConceptScore W2087624748C108311543 @default.
- W2087624748 hasConceptScore W2087624748C11413529 @default.
- W2087624748 hasConceptScore W2087624748C114614502 @default.
- W2087624748 hasConceptScore W2087624748C121955636 @default.
- W2087624748 hasConceptScore W2087624748C126255220 @default.
- W2087624748 hasConceptScore W2087624748C127413603 @default.
- W2087624748 hasConceptScore W2087624748C144133560 @default.
- W2087624748 hasConceptScore W2087624748C152587130 @default.
- W2087624748 hasConceptScore W2087624748C162324750 @default.
- W2087624748 hasConceptScore W2087624748C185429906 @default.
- W2087624748 hasConceptScore W2087624748C19499675 @default.
- W2087624748 hasConceptScore W2087624748C196083921 @default.
- W2087624748 hasConceptScore W2087624748C21200559 @default.
- W2087624748 hasConceptScore W2087624748C24326235 @default.
- W2087624748 hasConceptScore W2087624748C2777303404 @default.
- W2087624748 hasConceptScore W2087624748C28826006 @default.
- W2087624748 hasConceptScore W2087624748C33923547 @default.
- W2087624748 hasConceptScore W2087624748C42812 @default.
- W2087624748 hasConceptScore W2087624748C50522688 @default.