Matches in SemOpenAlex for { <https://semopenalex.org/work/W2087625596> ?p ?o ?g. }
- W2087625596 endingPage "62" @default.
- W2087625596 startingPage "52" @default.
- W2087625596 abstract "Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm." @default.
- W2087625596 created "2016-06-24" @default.
- W2087625596 creator A5017412371 @default.
- W2087625596 creator A5034121324 @default.
- W2087625596 date "2014-01-01" @default.
- W2087625596 modified "2023-10-03" @default.
- W2087625596 title "Magnetic field homogeneity perturbations in finite Halbach dipole magnets" @default.
- W2087625596 cites W1964669647 @default.
- W2087625596 cites W1983183140 @default.
- W2087625596 cites W1986944305 @default.
- W2087625596 cites W1999341748 @default.
- W2087625596 cites W2002884234 @default.
- W2087625596 cites W2006929511 @default.
- W2087625596 cites W2020694367 @default.
- W2087625596 cites W2021867036 @default.
- W2087625596 cites W2023321896 @default.
- W2087625596 cites W2026477391 @default.
- W2087625596 cites W2042931944 @default.
- W2087625596 cites W2051419954 @default.
- W2087625596 cites W2056872225 @default.
- W2087625596 cites W2058359806 @default.
- W2087625596 cites W2082119291 @default.
- W2087625596 cites W2083262250 @default.
- W2087625596 cites W2097725772 @default.
- W2087625596 cites W2105527551 @default.
- W2087625596 cites W2124501964 @default.
- W2087625596 cites W2128323986 @default.
- W2087625596 cites W2163375351 @default.
- W2087625596 cites W2167531398 @default.
- W2087625596 cites W2168377459 @default.
- W2087625596 cites W2217051974 @default.
- W2087625596 cites W2232939626 @default.
- W2087625596 cites W2327707503 @default.
- W2087625596 cites W3101495099 @default.
- W2087625596 cites W4253657688 @default.
- W2087625596 doi "https://doi.org/10.1016/j.jmr.2013.10.026" @default.
- W2087625596 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24316186" @default.
- W2087625596 hasPublicationYear "2014" @default.
- W2087625596 type Work @default.
- W2087625596 sameAs 2087625596 @default.
- W2087625596 citedByCount "26" @default.
- W2087625596 countsByYear W20876255962014 @default.
- W2087625596 countsByYear W20876255962015 @default.
- W2087625596 countsByYear W20876255962016 @default.
- W2087625596 countsByYear W20876255962017 @default.
- W2087625596 countsByYear W20876255962018 @default.
- W2087625596 countsByYear W20876255962019 @default.
- W2087625596 countsByYear W20876255962020 @default.
- W2087625596 countsByYear W20876255962021 @default.
- W2087625596 countsByYear W20876255962022 @default.
- W2087625596 countsByYear W20876255962023 @default.
- W2087625596 crossrefType "journal-article" @default.
- W2087625596 hasAuthorship W2087625596A5017412371 @default.
- W2087625596 hasAuthorship W2087625596A5034121324 @default.
- W2087625596 hasConcept C105795698 @default.
- W2087625596 hasConcept C115260700 @default.
- W2087625596 hasConcept C121332964 @default.
- W2087625596 hasConcept C134306372 @default.
- W2087625596 hasConcept C142259097 @default.
- W2087625596 hasConcept C157479481 @default.
- W2087625596 hasConcept C162565982 @default.
- W2087625596 hasConcept C16389437 @default.
- W2087625596 hasConcept C169852918 @default.
- W2087625596 hasConcept C172108966 @default.
- W2087625596 hasConcept C173523689 @default.
- W2087625596 hasConcept C182213014 @default.
- W2087625596 hasConcept C32546565 @default.
- W2087625596 hasConcept C33923547 @default.
- W2087625596 hasConcept C42283938 @default.
- W2087625596 hasConcept C46141821 @default.
- W2087625596 hasConcept C57482977 @default.
- W2087625596 hasConcept C62520636 @default.
- W2087625596 hasConcept C74650414 @default.
- W2087625596 hasConcept C95390329 @default.
- W2087625596 hasConceptScore W2087625596C105795698 @default.
- W2087625596 hasConceptScore W2087625596C115260700 @default.
- W2087625596 hasConceptScore W2087625596C121332964 @default.
- W2087625596 hasConceptScore W2087625596C134306372 @default.
- W2087625596 hasConceptScore W2087625596C142259097 @default.
- W2087625596 hasConceptScore W2087625596C157479481 @default.
- W2087625596 hasConceptScore W2087625596C162565982 @default.
- W2087625596 hasConceptScore W2087625596C16389437 @default.
- W2087625596 hasConceptScore W2087625596C169852918 @default.
- W2087625596 hasConceptScore W2087625596C172108966 @default.
- W2087625596 hasConceptScore W2087625596C173523689 @default.
- W2087625596 hasConceptScore W2087625596C182213014 @default.
- W2087625596 hasConceptScore W2087625596C32546565 @default.
- W2087625596 hasConceptScore W2087625596C33923547 @default.
- W2087625596 hasConceptScore W2087625596C42283938 @default.
- W2087625596 hasConceptScore W2087625596C46141821 @default.
- W2087625596 hasConceptScore W2087625596C57482977 @default.
- W2087625596 hasConceptScore W2087625596C62520636 @default.
- W2087625596 hasConceptScore W2087625596C74650414 @default.
- W2087625596 hasConceptScore W2087625596C95390329 @default.
- W2087625596 hasLocation W20876255961 @default.
- W2087625596 hasLocation W20876255962 @default.
- W2087625596 hasOpenAccess W2087625596 @default.
- W2087625596 hasPrimaryLocation W20876255961 @default.