Matches in SemOpenAlex for { <https://semopenalex.org/work/W2087700104> ?p ?o ?g. }
- W2087700104 endingPage "065002" @default.
- W2087700104 startingPage "065002" @default.
- W2087700104 abstract "Facies models try to explain facies architectures which have a primary control on the subsurface heterogeneities and the fluid flow characteristics of a given reservoir. In the process of facies modeling, geostatistical methods are implemented to integrate different sources of data into a consistent model. The facies models should describe facies interactions; the shape and geometry of the geobodies as they occur in reality. Two distinct categories of geostatistical techniques are two-point and multiple-point (geo) statistics (MPS). In this study, both of the aforementioned categories were applied to generate facies models. A sequential indicator simulation (SIS) and a truncated Gaussian simulation (TGS) represented two-point geostatistical methods, and a single normal equation simulation (SNESIM) selected as an MPS simulation representative. The dataset from an extremely channelized carbonate reservoir located in southwest Iran was applied to these algorithms to analyze their performance in reproducing complex curvilinear geobodies. The SNESIM algorithm needs consistent training images (TI) in which all possible facies architectures that are present in the area are included. The TI model was founded on the data acquired from modern occurrences. These analogies delivered vital information about the possible channel geometries and facies classes that are typically present in those similar environments. The MPS results were conditioned to both soft and hard data. Soft facies probabilities were acquired from a neural network workflow. In this workflow, seismic-derived attributes were implemented as the input data. Furthermore, MPS realizations were conditioned to hard data to guarantee the exact positioning and continuity of the channel bodies. A geobody extraction workflow was implemented to extract the most certain parts of the channel bodies from the seismic data. These extracted parts of the channel bodies were applied to the simulation workflow as hard data. This study showed how different sources of data can be employed in a multiple-point simulation algorithm to get reliable facies models. In addition, concerning the reproduction of curvilinear channel bodies, the modeling results revealed the strength of MPS algorithms (SNESIM in this study) in comparison with two-point geostatistical methods (including the SIS and TGS)." @default.
- W2087700104 created "2016-06-24" @default.
- W2087700104 creator A5056563752 @default.
- W2087700104 creator A5065359389 @default.
- W2087700104 creator A5077144947 @default.
- W2087700104 creator A5087141552 @default.
- W2087700104 date "2014-10-08" @default.
- W2087700104 modified "2023-10-17" @default.
- W2087700104 title "Two-point versus multiple-point geostatistics: the ability of geostatistical methods to capture complex geobodies and their facies associations—an application to a channelized carbonate reservoir, southwest Iran" @default.
- W2087700104 cites W1975862709 @default.
- W2087700104 cites W2002999103 @default.
- W2087700104 cites W2018173843 @default.
- W2087700104 cites W2023873688 @default.
- W2087700104 cites W2037123409 @default.
- W2087700104 cites W2039561079 @default.
- W2087700104 cites W20475988 @default.
- W2087700104 cites W2056894411 @default.
- W2087700104 cites W2065385548 @default.
- W2087700104 cites W2065605725 @default.
- W2087700104 cites W2079671963 @default.
- W2087700104 cites W2081919797 @default.
- W2087700104 cites W2084464678 @default.
- W2087700104 cites W2114556119 @default.
- W2087700104 cites W2148903074 @default.
- W2087700104 cites W4252917338 @default.
- W2087700104 doi "https://doi.org/10.1088/1742-2132/11/6/065002" @default.
- W2087700104 hasPublicationYear "2014" @default.
- W2087700104 type Work @default.
- W2087700104 sameAs 2087700104 @default.
- W2087700104 citedByCount "11" @default.
- W2087700104 countsByYear W20877001042016 @default.
- W2087700104 countsByYear W20877001042017 @default.
- W2087700104 countsByYear W20877001042019 @default.
- W2087700104 countsByYear W20877001042021 @default.
- W2087700104 countsByYear W20877001042022 @default.
- W2087700104 countsByYear W20877001042023 @default.
- W2087700104 crossrefType "journal-article" @default.
- W2087700104 hasAuthorship W2087700104A5056563752 @default.
- W2087700104 hasAuthorship W2087700104A5065359389 @default.
- W2087700104 hasAuthorship W2087700104A5077144947 @default.
- W2087700104 hasAuthorship W2087700104A5087141552 @default.
- W2087700104 hasBestOaLocation W20877001041 @default.
- W2087700104 hasConcept C105795698 @default.
- W2087700104 hasConcept C109007969 @default.
- W2087700104 hasConcept C11413529 @default.
- W2087700104 hasConcept C114793014 @default.
- W2087700104 hasConcept C119857082 @default.
- W2087700104 hasConcept C124101348 @default.
- W2087700104 hasConcept C125572338 @default.
- W2087700104 hasConcept C127162648 @default.
- W2087700104 hasConcept C127313418 @default.
- W2087700104 hasConcept C14641988 @default.
- W2087700104 hasConcept C146588470 @default.
- W2087700104 hasConcept C154881674 @default.
- W2087700104 hasConcept C177212765 @default.
- W2087700104 hasConcept C2524010 @default.
- W2087700104 hasConcept C28719098 @default.
- W2087700104 hasConcept C31258907 @default.
- W2087700104 hasConcept C33923547 @default.
- W2087700104 hasConcept C41008148 @default.
- W2087700104 hasConcept C51889082 @default.
- W2087700104 hasConcept C76155785 @default.
- W2087700104 hasConcept C77088390 @default.
- W2087700104 hasConcept C78762247 @default.
- W2087700104 hasConcept C81692654 @default.
- W2087700104 hasConcept C94747663 @default.
- W2087700104 hasConceptScore W2087700104C105795698 @default.
- W2087700104 hasConceptScore W2087700104C109007969 @default.
- W2087700104 hasConceptScore W2087700104C11413529 @default.
- W2087700104 hasConceptScore W2087700104C114793014 @default.
- W2087700104 hasConceptScore W2087700104C119857082 @default.
- W2087700104 hasConceptScore W2087700104C124101348 @default.
- W2087700104 hasConceptScore W2087700104C125572338 @default.
- W2087700104 hasConceptScore W2087700104C127162648 @default.
- W2087700104 hasConceptScore W2087700104C127313418 @default.
- W2087700104 hasConceptScore W2087700104C14641988 @default.
- W2087700104 hasConceptScore W2087700104C146588470 @default.
- W2087700104 hasConceptScore W2087700104C154881674 @default.
- W2087700104 hasConceptScore W2087700104C177212765 @default.
- W2087700104 hasConceptScore W2087700104C2524010 @default.
- W2087700104 hasConceptScore W2087700104C28719098 @default.
- W2087700104 hasConceptScore W2087700104C31258907 @default.
- W2087700104 hasConceptScore W2087700104C33923547 @default.
- W2087700104 hasConceptScore W2087700104C41008148 @default.
- W2087700104 hasConceptScore W2087700104C51889082 @default.
- W2087700104 hasConceptScore W2087700104C76155785 @default.
- W2087700104 hasConceptScore W2087700104C77088390 @default.
- W2087700104 hasConceptScore W2087700104C78762247 @default.
- W2087700104 hasConceptScore W2087700104C81692654 @default.
- W2087700104 hasConceptScore W2087700104C94747663 @default.
- W2087700104 hasIssue "6" @default.
- W2087700104 hasLocation W20877001041 @default.
- W2087700104 hasOpenAccess W2087700104 @default.
- W2087700104 hasPrimaryLocation W20877001041 @default.
- W2087700104 hasRelatedWork W2014059759 @default.
- W2087700104 hasRelatedWork W2046684028 @default.
- W2087700104 hasRelatedWork W2354548383 @default.
- W2087700104 hasRelatedWork W2356808522 @default.