Matches in SemOpenAlex for { <https://semopenalex.org/work/W2087854113> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2087854113 endingPage "249" @default.
- W2087854113 startingPage "237" @default.
- W2087854113 abstract "Forecasting the annual long-term consumption of electrical energy in a country has remained for the Electrical Engineer quite a difficult problem to solve. As an important planning tool, the forecast of electrical energy consumption has to be as precise as possible. The most commonly employed method is that of scenario building. With the scenario method, consumption forecasting is done through the simulation of a sequence of events. The generated data cannot therefore be as stochastic as it is in reality. With the advent of the computer age, numerous other statistical methods for consumption forecasting have been developed. Prominent among them is the forecasting by machine learning with multiple-Input multiple-Output local learning strategy. The objective here is to obtain a forecast which is as precise as possible, while conserving the stochastic nature between the historical and the forecasted data. This article first presents the different strategies for long-term power consumption forecasting using Multiple-Input Multiple-Output local learning strategies. It then proposes, based on the work of earlier researchers, an approach that uses the weighted averages to improve on the level of precision obtained. Furthermore, it applies this new improved calculation method to forecast the power consumption specifically in Cameroon for horizon 2035, when the country aspires to become an emerging economy. The last part of this article utilizes historical data on the electricity consumption of some countries from the World Bank dataset to do a comparative study between the here newly proposed method and that used previously. The results show that, the new method using MISMO plus weighted average delivers more exact results for long-term electrical power consumption forecasts." @default.
- W2087854113 created "2016-06-24" @default.
- W2087854113 creator A5002110446 @default.
- W2087854113 creator A5029376619 @default.
- W2087854113 creator A5036981622 @default.
- W2087854113 creator A5044297264 @default.
- W2087854113 creator A5071757448 @default.
- W2087854113 date "2014-06-30" @default.
- W2087854113 modified "2023-09-26" @default.
- W2087854113 title "Improved Electric Power Demand Forecasting by adapting the Weighted Average to the MISMO Strategy" @default.
- W2087854113 cites W1492725832 @default.
- W2087854113 cites W1511501560 @default.
- W2087854113 cites W1558248317 @default.
- W2087854113 cites W1990785420 @default.
- W2087854113 cites W2084175761 @default.
- W2087854113 cites W2092315180 @default.
- W2087854113 cites W2145277132 @default.
- W2087854113 cites W2167464405 @default.
- W2087854113 cites W2171798072 @default.
- W2087854113 cites W2778646877 @default.
- W2087854113 cites W777046221 @default.
- W2087854113 cites W803413940 @default.
- W2087854113 doi "https://doi.org/10.15676/ijeei.2014.6.2.2" @default.
- W2087854113 hasPublicationYear "2014" @default.
- W2087854113 type Work @default.
- W2087854113 sameAs 2087854113 @default.
- W2087854113 citedByCount "3" @default.
- W2087854113 countsByYear W20878541132017 @default.
- W2087854113 countsByYear W20878541132022 @default.
- W2087854113 crossrefType "journal-article" @default.
- W2087854113 hasAuthorship W2087854113A5002110446 @default.
- W2087854113 hasAuthorship W2087854113A5029376619 @default.
- W2087854113 hasAuthorship W2087854113A5036981622 @default.
- W2087854113 hasAuthorship W2087854113A5044297264 @default.
- W2087854113 hasAuthorship W2087854113A5071757448 @default.
- W2087854113 hasBestOaLocation W20878541131 @default.
- W2087854113 hasConcept C121332964 @default.
- W2087854113 hasConcept C127413603 @default.
- W2087854113 hasConcept C149782125 @default.
- W2087854113 hasConcept C162324750 @default.
- W2087854113 hasConcept C163258240 @default.
- W2087854113 hasConcept C193809577 @default.
- W2087854113 hasConcept C41008148 @default.
- W2087854113 hasConcept C42475967 @default.
- W2087854113 hasConcept C97355855 @default.
- W2087854113 hasConceptScore W2087854113C121332964 @default.
- W2087854113 hasConceptScore W2087854113C127413603 @default.
- W2087854113 hasConceptScore W2087854113C149782125 @default.
- W2087854113 hasConceptScore W2087854113C162324750 @default.
- W2087854113 hasConceptScore W2087854113C163258240 @default.
- W2087854113 hasConceptScore W2087854113C193809577 @default.
- W2087854113 hasConceptScore W2087854113C41008148 @default.
- W2087854113 hasConceptScore W2087854113C42475967 @default.
- W2087854113 hasConceptScore W2087854113C97355855 @default.
- W2087854113 hasIssue "2" @default.
- W2087854113 hasLocation W20878541131 @default.
- W2087854113 hasOpenAccess W2087854113 @default.
- W2087854113 hasPrimaryLocation W20878541131 @default.
- W2087854113 hasRelatedWork W1973538245 @default.
- W2087854113 hasRelatedWork W2013444265 @default.
- W2087854113 hasRelatedWork W2021570049 @default.
- W2087854113 hasRelatedWork W2030617584 @default.
- W2087854113 hasRelatedWork W2056210026 @default.
- W2087854113 hasRelatedWork W2161519270 @default.
- W2087854113 hasRelatedWork W2899084033 @default.
- W2087854113 hasRelatedWork W3149328373 @default.
- W2087854113 hasRelatedWork W331667891 @default.
- W2087854113 hasRelatedWork W2142213187 @default.
- W2087854113 hasVolume "6" @default.
- W2087854113 isParatext "false" @default.
- W2087854113 isRetracted "false" @default.
- W2087854113 magId "2087854113" @default.
- W2087854113 workType "article" @default.