Matches in SemOpenAlex for { <https://semopenalex.org/work/W2087966263> ?p ?o ?g. }
- W2087966263 endingPage "290" @default.
- W2087966263 startingPage "276" @default.
- W2087966263 abstract "Tutte polynomials are important graph invariants with rich applications in combinatorics, topology, knot theory, coding theory and even physics. The Tutte polynomial T(G,X,Y) is a polynomial in Z[X,Y] which depends on a graph G. Computing the coefficients of T(G,X,Y), and even evaluating T(G,X,Y) at specific points (x,y) is ♯P hard by a result of Jaeger et al. (Math. Proc. Cambridge Philos. Soc. 108 (1989) 35). On the other hand, Andrzejak (Discrete Math. 190 (1998) 39–54) and Noble (Combin. Probab. Comput. 7 (1998) 307–321) have shown independently, that, if G is a graph of bounded tree width, computing T(G,X,Y) can be done in polynomial time. We extend this result to the signed Tutte polynomials introduced in 1989 by Kauffman and the colored Tutte polynomials introduced in 1999 by Bollobas and Riordan. This allows us to prove similar results for the Jones polynomials and Kauffman brackets for knots and links which have a signed graph presentation of bounded tree width. Jones polynomials and Kauffman polynomials are the most prominent invariants of knot theory. For alternating links, they are easily computable from the Tutte polynomials of the signed graph representing the link by a result of Thistlethwaite (1988). For general links one has to use the colored Tutte polynomial instead. Knots and links can be presented as labeled planar graphs. The tree width of a link L is defined as the tree width of its graphical presentation D(L) as crossing diagrams. We show that for (not necessarily alternating) knots and links of tree width at most k, even the Kauffman square bracket [L] introduced by Bollobas and Riordan can be computed in polynomial time. Hence, the classical Kauffman bracket 〈L〉 and the Jones polynomial of links of tree width at most k are computable in polynomial time. Our proof is based on, but extends considerably previous work by B. Courcelle, U. Rotics and the author. It also gives a new proof of the result for Tutte polynomials and generalizes to a wide class of polynomials defined as generating functions definable in Monadic Second Order Logic with order, but invariant under it." @default.
- W2087966263 created "2016-06-24" @default.
- W2087966263 creator A5090746300 @default.
- W2087966263 date "2005-01-01" @default.
- W2087966263 modified "2023-10-16" @default.
- W2087966263 title "Coloured Tutte polynomials and Kauffman brackets for graphs of bounded tree width" @default.
- W2087966263 cites W1511526676 @default.
- W2087966263 cites W1576854535 @default.
- W2087966263 cites W1826325207 @default.
- W2087966263 cites W1834999574 @default.
- W2087966263 cites W1973347908 @default.
- W2087966263 cites W1973516699 @default.
- W2087966263 cites W1987027130 @default.
- W2087966263 cites W1991981864 @default.
- W2087966263 cites W1993328543 @default.
- W2087966263 cites W2003136749 @default.
- W2087966263 cites W2015199322 @default.
- W2087966263 cites W2028357390 @default.
- W2087966263 cites W2033879413 @default.
- W2087966263 cites W2039763834 @default.
- W2087966263 cites W2040101882 @default.
- W2087966263 cites W2051679228 @default.
- W2087966263 cites W2054167510 @default.
- W2087966263 cites W2064796716 @default.
- W2087966263 cites W2068033618 @default.
- W2087966263 cites W2085467680 @default.
- W2087966263 cites W2085923075 @default.
- W2087966263 cites W2089928579 @default.
- W2087966263 cites W2092014247 @default.
- W2087966263 cites W2092277386 @default.
- W2087966263 cites W2092744453 @default.
- W2087966263 cites W2093383089 @default.
- W2087966263 cites W2109716789 @default.
- W2087966263 cites W2112468172 @default.
- W2087966263 cites W2156361153 @default.
- W2087966263 cites W2158933585 @default.
- W2087966263 cites W2314361409 @default.
- W2087966263 cites W4213257303 @default.
- W2087966263 cites W4244088669 @default.
- W2087966263 cites W52611116 @default.
- W2087966263 cites W572537471 @default.
- W2087966263 doi "https://doi.org/10.1016/j.dam.2004.01.016" @default.
- W2087966263 hasPublicationYear "2005" @default.
- W2087966263 type Work @default.
- W2087966263 sameAs 2087966263 @default.
- W2087966263 citedByCount "34" @default.
- W2087966263 countsByYear W20879662632012 @default.
- W2087966263 countsByYear W20879662632013 @default.
- W2087966263 countsByYear W20879662632014 @default.
- W2087966263 countsByYear W20879662632016 @default.
- W2087966263 countsByYear W20879662632017 @default.
- W2087966263 countsByYear W20879662632018 @default.
- W2087966263 countsByYear W20879662632019 @default.
- W2087966263 countsByYear W20879662632020 @default.
- W2087966263 countsByYear W20879662632021 @default.
- W2087966263 countsByYear W20879662632022 @default.
- W2087966263 countsByYear W20879662632023 @default.
- W2087966263 crossrefType "journal-article" @default.
- W2087966263 hasAuthorship W2087966263A5090746300 @default.
- W2087966263 hasBestOaLocation W20879662631 @default.
- W2087966263 hasConcept C101044782 @default.
- W2087966263 hasConcept C101837359 @default.
- W2087966263 hasConcept C114614502 @default.
- W2087966263 hasConcept C118615104 @default.
- W2087966263 hasConcept C126385604 @default.
- W2087966263 hasConcept C132525143 @default.
- W2087966263 hasConcept C134306372 @default.
- W2087966263 hasConcept C14447369 @default.
- W2087966263 hasConcept C170412648 @default.
- W2087966263 hasConcept C203776342 @default.
- W2087966263 hasConcept C22149727 @default.
- W2087966263 hasConcept C33923547 @default.
- W2087966263 hasConcept C34388435 @default.
- W2087966263 hasConcept C52007518 @default.
- W2087966263 hasConcept C90119067 @default.
- W2087966263 hasConceptScore W2087966263C101044782 @default.
- W2087966263 hasConceptScore W2087966263C101837359 @default.
- W2087966263 hasConceptScore W2087966263C114614502 @default.
- W2087966263 hasConceptScore W2087966263C118615104 @default.
- W2087966263 hasConceptScore W2087966263C126385604 @default.
- W2087966263 hasConceptScore W2087966263C132525143 @default.
- W2087966263 hasConceptScore W2087966263C134306372 @default.
- W2087966263 hasConceptScore W2087966263C14447369 @default.
- W2087966263 hasConceptScore W2087966263C170412648 @default.
- W2087966263 hasConceptScore W2087966263C203776342 @default.
- W2087966263 hasConceptScore W2087966263C22149727 @default.
- W2087966263 hasConceptScore W2087966263C33923547 @default.
- W2087966263 hasConceptScore W2087966263C34388435 @default.
- W2087966263 hasConceptScore W2087966263C52007518 @default.
- W2087966263 hasConceptScore W2087966263C90119067 @default.
- W2087966263 hasIssue "2" @default.
- W2087966263 hasLocation W20879662631 @default.
- W2087966263 hasOpenAccess W2087966263 @default.
- W2087966263 hasPrimaryLocation W20879662631 @default.
- W2087966263 hasRelatedWork W2032055415 @default.
- W2087966263 hasRelatedWork W2087966263 @default.
- W2087966263 hasRelatedWork W2527934888 @default.
- W2087966263 hasRelatedWork W2791148525 @default.