Matches in SemOpenAlex for { <https://semopenalex.org/work/W2088049505> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2088049505 endingPage "117" @default.
- W2088049505 startingPage "106" @default.
- W2088049505 abstract "Plackett [1] has discussed the history and generalizations of the Gaussian theorem which states that least squares estimates are linear unbiased estimates with minimum variance. General forms of the theorem are due to Aitken [2], [3] and Rao [4], [5]. The essence of the proof for Aitken's general case consists in minimizing, simultaneously, certain quadratic forms involving linear combinations of the parameters. Plackett derived Aitken's result by using a matrix relation. The proof of the theorem follows quickly once the relation is established. A somewhat similar but simpler matrix relation is used by Rao ([4], page 10). Aitken [2] and Rao [4], [5] obtain minimum variance with the use of Lagrange multipliers. Unless one has a method of working with matrices of derivatives it seems necessary to differentiate with respect to the many scalars constituting the matrices and to assemble the results in desired matrix form. Authors frequently give only the assembled results ([4], page 10, [5], page 17, [6], page 83). The question arises as to whether it is possible to use the logically preferable matrix derivative methods of minimization. It is shown below that the use of matrices of partial derivatives [7] leads logically to the solution without the necessity of changing to and from scalar notation, or without the necessity of establishing some relation which implicitly contains the solution. Matrix derivative methods seem to be preferable methods for undertaking solutions of problems of simultaneous matrix minimization with side conditions for the same reason that derivative methods are preferable to the use of some (unknown) relation in solving problems of minimization involving scalars. They may also be used in establishing the relation which may then be verified without their use. The paper includes generalizations of the results of Aitken [2], [3], Rao [4], [5], and David and Neyman [8]. It gives a general formula for simultaneous unbiased estimators of linear functions of parameters when the parameters are subject to linear restrictions and shows how the results are applicable to special cases. It provides formulas for the variance matrix of these estimators. It generalizes a matrix relation used by Plackett [1]. It used the matrix square root transformation in establishing the general result for the variance of (weighted) residuals when there may be linear restrictions on the parameters. It provides a generalization of a formula of David and Neyman [8] in estimating the variance matrix of the unbiased linear estimators." @default.
- W2088049505 created "2016-06-24" @default.
- W2088049505 creator A5035869892 @default.
- W2088049505 date "1958-03-01" @default.
- W2088049505 modified "2023-09-25" @default.
- W2088049505 title "Generalizations of a Gaussian Theorem" @default.
- W2088049505 doi "https://doi.org/10.1214/aoms/1177706708" @default.
- W2088049505 hasPublicationYear "1958" @default.
- W2088049505 type Work @default.
- W2088049505 sameAs 2088049505 @default.
- W2088049505 citedByCount "13" @default.
- W2088049505 countsByYear W20880495052017 @default.
- W2088049505 countsByYear W20880495052021 @default.
- W2088049505 countsByYear W20880495052022 @default.
- W2088049505 crossrefType "journal-article" @default.
- W2088049505 hasAuthorship W2088049505A5035869892 @default.
- W2088049505 hasBestOaLocation W20880495051 @default.
- W2088049505 hasConcept C106487976 @default.
- W2088049505 hasConcept C121332964 @default.
- W2088049505 hasConcept C126312332 @default.
- W2088049505 hasConcept C136119220 @default.
- W2088049505 hasConcept C159985019 @default.
- W2088049505 hasConcept C163716315 @default.
- W2088049505 hasConcept C192562407 @default.
- W2088049505 hasConcept C202444582 @default.
- W2088049505 hasConcept C28826006 @default.
- W2088049505 hasConcept C33923547 @default.
- W2088049505 hasConcept C45357846 @default.
- W2088049505 hasConcept C62520636 @default.
- W2088049505 hasConcept C94375191 @default.
- W2088049505 hasConceptScore W2088049505C106487976 @default.
- W2088049505 hasConceptScore W2088049505C121332964 @default.
- W2088049505 hasConceptScore W2088049505C126312332 @default.
- W2088049505 hasConceptScore W2088049505C136119220 @default.
- W2088049505 hasConceptScore W2088049505C159985019 @default.
- W2088049505 hasConceptScore W2088049505C163716315 @default.
- W2088049505 hasConceptScore W2088049505C192562407 @default.
- W2088049505 hasConceptScore W2088049505C202444582 @default.
- W2088049505 hasConceptScore W2088049505C28826006 @default.
- W2088049505 hasConceptScore W2088049505C33923547 @default.
- W2088049505 hasConceptScore W2088049505C45357846 @default.
- W2088049505 hasConceptScore W2088049505C62520636 @default.
- W2088049505 hasConceptScore W2088049505C94375191 @default.
- W2088049505 hasIssue "1" @default.
- W2088049505 hasLocation W20880495051 @default.
- W2088049505 hasOpenAccess W2088049505 @default.
- W2088049505 hasPrimaryLocation W20880495051 @default.
- W2088049505 hasRelatedWork W1969557273 @default.
- W2088049505 hasRelatedWork W1979350499 @default.
- W2088049505 hasRelatedWork W2023689870 @default.
- W2088049505 hasRelatedWork W2023930998 @default.
- W2088049505 hasRelatedWork W2084308273 @default.
- W2088049505 hasRelatedWork W2089239621 @default.
- W2088049505 hasRelatedWork W2208179417 @default.
- W2088049505 hasRelatedWork W2377215936 @default.
- W2088049505 hasRelatedWork W2581587767 @default.
- W2088049505 hasRelatedWork W4386731225 @default.
- W2088049505 hasVolume "29" @default.
- W2088049505 isParatext "false" @default.
- W2088049505 isRetracted "false" @default.
- W2088049505 magId "2088049505" @default.
- W2088049505 workType "article" @default.