Matches in SemOpenAlex for { <https://semopenalex.org/work/W2088209000> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2088209000 endingPage "807" @default.
- W2088209000 startingPage "799" @default.
- W2088209000 abstract "Recent progress in the shock-tube study of ignition kinetics in various detonable gases can be now utilized for the interpretation of gasdynamic phenomena associated with the detonation process. As a consequence of current knowledge of these processes, globally stationary multiwave detonations must be considered as intimately associated with such essentially nonstationary flow phenomena as those occurring in the course of the transition to detonation or in the decoupling and re-establishment of the detonation wave that takes place close to the limits of detonability. In particular, the following features have come to light: Ignition kinetics associated with the transition to detonation should be considered under the transient gasdynamic processes, and this must include, the effects of positive temperature and density gradients in the flow field. While the induction time can be “accumulated” in a simple compression wave, in a shock-heated gas an “explosion in explosion” may develop leading to the establishment of a detonation wave. More detailed gasdynamic analysis based on concrete kinetics may explain the difference in the length of “induction distances” observed in various experiments. Similar type of phenomena can be observed when the detonation wave is initiated by incident or reflected waves in shock tubes. Blast waves or diffracting detonation waves in a combustible mixture produce negative gradients in the temperature and density behind the shock front. Even in quite strong waves, with parameters close to the CJ condition, the ignition zone becomes decoupled from the shock front and a local, secondary self-ignition may occur in the shock-compressed gas, leading to the re-establishment of detonation. The multilocus ignition mechanism observed in shock-tube experiments can be used to explain some of these observations. On the basis of ignition kinetics in the transient flow field of a diverging shock front, as it occurs in a decoupled wave, the following estimate of the wave thickness can be derived: τ(ind)≅(d/dr)τ(ρ, T)rτ(ind), where r is the characteristic thickness of the reaction zone behind the diverging shock front. According to this estimate, the spacing of the wave (i.e., the shock wave radius) should be of the order of 10r, depending on the value of the activation energy in the rate-controlling reaction. Gasdynamic processes that take place in a multihead detonation front are then explained in relation to both the topics described above. Transverse wave collisions lead periodically to fast explosions of small samples of the compressed gas in the reaction zone, producing a number of nonstationary expanding blast waves. Decoupling processes in these waves can be described in the same terms as those used for divering waves, and an average spacing of transverse waves in a stationary multifront wave can be evaluated. Depending on kinetic parameters of the ignition reactions, a “hydrodynamic” thickness of the multiheaded front may be of about 1 order of magnitude larger than the thickness of a reasonable induction reaction zone in a planar one-dimensional detonation wave. On this basis, recent results of different research groups concerned with the study of the detonation wave structure are discussed." @default.
- W2088209000 created "2016-06-24" @default.
- W2088209000 creator A5064183427 @default.
- W2088209000 date "1969-01-01" @default.
- W2088209000 modified "2023-10-18" @default.
- W2088209000 title "Nonstationary phenomena in gaseous detonation" @default.
- W2088209000 cites W1974177379 @default.
- W2088209000 cites W1983862481 @default.
- W2088209000 cites W1987737989 @default.
- W2088209000 cites W2002694169 @default.
- W2088209000 cites W2007537223 @default.
- W2088209000 cites W2033967589 @default.
- W2088209000 cites W2039750576 @default.
- W2088209000 cites W2041599545 @default.
- W2088209000 cites W2041898139 @default.
- W2088209000 cites W2050069679 @default.
- W2088209000 cites W2057891931 @default.
- W2088209000 cites W2078247659 @default.
- W2088209000 cites W2086953167 @default.
- W2088209000 doi "https://doi.org/10.1016/s0082-0784(69)80461-3" @default.
- W2088209000 hasPublicationYear "1969" @default.
- W2088209000 type Work @default.
- W2088209000 sameAs 2088209000 @default.
- W2088209000 citedByCount "15" @default.
- W2088209000 countsByYear W20882090002012 @default.
- W2088209000 countsByYear W20882090002017 @default.
- W2088209000 countsByYear W20882090002020 @default.
- W2088209000 countsByYear W20882090002022 @default.
- W2088209000 countsByYear W20882090002023 @default.
- W2088209000 crossrefType "journal-article" @default.
- W2088209000 hasAuthorship W2088209000A5064183427 @default.
- W2088209000 hasConcept C10500322 @default.
- W2088209000 hasConcept C121332964 @default.
- W2088209000 hasConcept C122881758 @default.
- W2088209000 hasConcept C126322002 @default.
- W2088209000 hasConcept C127413603 @default.
- W2088209000 hasConcept C133731056 @default.
- W2088209000 hasConcept C154238967 @default.
- W2088209000 hasConcept C159063594 @default.
- W2088209000 hasConcept C178790620 @default.
- W2088209000 hasConcept C185592680 @default.
- W2088209000 hasConcept C192562407 @default.
- W2088209000 hasConcept C203224028 @default.
- W2088209000 hasConcept C203397868 @default.
- W2088209000 hasConcept C205606062 @default.
- W2088209000 hasConcept C2781300812 @default.
- W2088209000 hasConcept C57879066 @default.
- W2088209000 hasConcept C70477161 @default.
- W2088209000 hasConcept C71924100 @default.
- W2088209000 hasConcept C86377145 @default.
- W2088209000 hasConcept C97355855 @default.
- W2088209000 hasConceptScore W2088209000C10500322 @default.
- W2088209000 hasConceptScore W2088209000C121332964 @default.
- W2088209000 hasConceptScore W2088209000C122881758 @default.
- W2088209000 hasConceptScore W2088209000C126322002 @default.
- W2088209000 hasConceptScore W2088209000C127413603 @default.
- W2088209000 hasConceptScore W2088209000C133731056 @default.
- W2088209000 hasConceptScore W2088209000C154238967 @default.
- W2088209000 hasConceptScore W2088209000C159063594 @default.
- W2088209000 hasConceptScore W2088209000C178790620 @default.
- W2088209000 hasConceptScore W2088209000C185592680 @default.
- W2088209000 hasConceptScore W2088209000C192562407 @default.
- W2088209000 hasConceptScore W2088209000C203224028 @default.
- W2088209000 hasConceptScore W2088209000C203397868 @default.
- W2088209000 hasConceptScore W2088209000C205606062 @default.
- W2088209000 hasConceptScore W2088209000C2781300812 @default.
- W2088209000 hasConceptScore W2088209000C57879066 @default.
- W2088209000 hasConceptScore W2088209000C70477161 @default.
- W2088209000 hasConceptScore W2088209000C71924100 @default.
- W2088209000 hasConceptScore W2088209000C86377145 @default.
- W2088209000 hasConceptScore W2088209000C97355855 @default.
- W2088209000 hasIssue "1" @default.
- W2088209000 hasLocation W20882090001 @default.
- W2088209000 hasOpenAccess W2088209000 @default.
- W2088209000 hasPrimaryLocation W20882090001 @default.
- W2088209000 hasRelatedWork W1579813009 @default.
- W2088209000 hasRelatedWork W2004818417 @default.
- W2088209000 hasRelatedWork W2085592553 @default.
- W2088209000 hasRelatedWork W2316206186 @default.
- W2088209000 hasRelatedWork W2364943952 @default.
- W2088209000 hasRelatedWork W2367236678 @default.
- W2088209000 hasRelatedWork W2389087320 @default.
- W2088209000 hasRelatedWork W2392959888 @default.
- W2088209000 hasRelatedWork W2672797160 @default.
- W2088209000 hasRelatedWork W4319312054 @default.
- W2088209000 hasVolume "12" @default.
- W2088209000 isParatext "false" @default.
- W2088209000 isRetracted "false" @default.
- W2088209000 magId "2088209000" @default.
- W2088209000 workType "article" @default.