Matches in SemOpenAlex for { <https://semopenalex.org/work/W2088278318> ?p ?o ?g. }
- W2088278318 endingPage "42" @default.
- W2088278318 startingPage "28" @default.
- W2088278318 abstract "In the Emeishan large igneous province, SW China, there are many layered mafic–ultramafic intrusions such as the Baima, Hongge, Panzhihua and Taihe intrusions that host world-class Fe–Ti oxide ore deposits. Despite numerous studies, the origin of these deposits still remains elusive. This includes the role of crustal contamination, especially addition of external CO2 from carbonate country rocks during contact metamorphism, in triggering Fe–Ti oxide crystallization from high-Mg basaltic magma. To address this important issue, we have carried out an integrated O–Sr–Nd isotope study of these ore-bearing intrusions and the country rocks. Our results show that in these intrusions clinopyroxene is much less susceptible to fluid–mineral oxygen isotope exchange than coexisting plagioclase and Fe–Ti oxides, which is similar to other intrusions worldwide (e.g., Taylor, 1967, Gregory and Taylor, 1981). Our calculations based on the least exchanged clinopyroxene oxygen isotope data show that the mean δ18O values for the parental magmas of these intrusions are Baima = 5.7‰, Panzhihua = 6.1‰, Taihe = 5.9‰. The estimated mean δ18O value for the parental magma of the Upper and Middle Zones of the Hongge intrusion is 6.2‰, which is similar to those for the parental magmas of the other intrusions (Baima, Panzhihua and Taihe). By contrast, the estimated mean δ18O value for the parental magma of the Lower Zone of the Hongge intrusion is higher (6.9‰). This difference, together with higher initial 87Sr/86Sr ratios (0.7057 to 0.7076) and lower εNdt values (− 2.82 to − 0.07) for this zone, can be attributed to higher degrees of contamination with siliceous crustal materials in this zone than elsewhere in this intrusion. Comparison of O–Sr–Nd isotope compositions between the intrusions and country rocks reveals that bulk assimilation of carbonate country rocks is negligible in all of these intrusions. Mixing calculations using the O–Sr–Nd isotope data are consistent with variable degrees of contamination with siliceous crustal materials in the intrusions: Panzhihua, < 5%, Baima and Taihe, < 10%, the Middle and Upper Zone of the Hongge intrusion, < 10%, the Lower Zone of the Hongge intrusion, < 15%. These percentages are maximum values and may be reduced if contamination was selective in nature, involving Sr- and Nd-bearing fluids or partial melts. Based on the oxygen isotope results, an iterative calculation with a CO2/magma mass ratio = 1/1000 for each increment reveals that the Panzhihua magma reacted with < 1 wt.% of CO2 released from the footwall during contact metamorphism. This amount is not sufficient to increase the oxidation state of the magma to the level that Fe–Ti oxides would crystallize alone from the magma. Therefore, we conclude that external CO2 did not play a major role in the formation of the Fe–Ti oxide ores in the Panzhihua intrusion." @default.
- W2088278318 created "2016-06-24" @default.
- W2088278318 creator A5011065438 @default.
- W2088278318 creator A5014742790 @default.
- W2088278318 creator A5018166279 @default.
- W2088278318 creator A5041641534 @default.
- W2088278318 creator A5060933989 @default.
- W2088278318 creator A5062195279 @default.
- W2088278318 creator A5080552201 @default.
- W2088278318 date "2015-04-01" @default.
- W2088278318 modified "2023-10-14" @default.
- W2088278318 title "Integrated O–Sr–Nd isotope constraints on the evolution of four important Fe–Ti oxide ore-bearing mafic–ultramafic intrusions in the Emeishan large igneous province, SW China" @default.
- W2088278318 cites W1207354341 @default.
- W2088278318 cites W1618437740 @default.
- W2088278318 cites W1667322976 @default.
- W2088278318 cites W1965396523 @default.
- W2088278318 cites W1970122979 @default.
- W2088278318 cites W1973432121 @default.
- W2088278318 cites W1979536186 @default.
- W2088278318 cites W1979704880 @default.
- W2088278318 cites W1983695043 @default.
- W2088278318 cites W1984762153 @default.
- W2088278318 cites W1984945854 @default.
- W2088278318 cites W1992563879 @default.
- W2088278318 cites W1996590499 @default.
- W2088278318 cites W1997606350 @default.
- W2088278318 cites W2000693231 @default.
- W2088278318 cites W2001074655 @default.
- W2088278318 cites W2004240468 @default.
- W2088278318 cites W2007113204 @default.
- W2088278318 cites W2008925901 @default.
- W2088278318 cites W2009003389 @default.
- W2088278318 cites W2013259970 @default.
- W2088278318 cites W2015118042 @default.
- W2088278318 cites W2016060298 @default.
- W2088278318 cites W2016845353 @default.
- W2088278318 cites W2017247293 @default.
- W2088278318 cites W2020775643 @default.
- W2088278318 cites W2026023731 @default.
- W2088278318 cites W2026164853 @default.
- W2088278318 cites W2026299727 @default.
- W2088278318 cites W2030279977 @default.
- W2088278318 cites W2031047203 @default.
- W2088278318 cites W2031194632 @default.
- W2088278318 cites W2033616295 @default.
- W2088278318 cites W2037386539 @default.
- W2088278318 cites W2042692134 @default.
- W2088278318 cites W2043473138 @default.
- W2088278318 cites W2048857036 @default.
- W2088278318 cites W2049566684 @default.
- W2088278318 cites W2051271251 @default.
- W2088278318 cites W2051704045 @default.
- W2088278318 cites W2055311296 @default.
- W2088278318 cites W2055779151 @default.
- W2088278318 cites W2056583736 @default.
- W2088278318 cites W2056955676 @default.
- W2088278318 cites W2064411977 @default.
- W2088278318 cites W2066300646 @default.
- W2088278318 cites W2068202901 @default.
- W2088278318 cites W2081611476 @default.
- W2088278318 cites W2083177593 @default.
- W2088278318 cites W2087494921 @default.
- W2088278318 cites W2088223235 @default.
- W2088278318 cites W2089435207 @default.
- W2088278318 cites W2090035514 @default.
- W2088278318 cites W2090640707 @default.
- W2088278318 cites W2091582491 @default.
- W2088278318 cites W2111240109 @default.
- W2088278318 cites W2119756985 @default.
- W2088278318 cites W2134912235 @default.
- W2088278318 cites W2139216709 @default.
- W2088278318 cites W2140136526 @default.
- W2088278318 cites W2143045284 @default.
- W2088278318 cites W2147259955 @default.
- W2088278318 cites W2150599085 @default.
- W2088278318 cites W2156218776 @default.
- W2088278318 cites W2159940268 @default.
- W2088278318 cites W2164517911 @default.
- W2088278318 cites W2164801517 @default.
- W2088278318 cites W2171801505 @default.
- W2088278318 cites W2179323784 @default.
- W2088278318 cites W2770177381 @default.
- W2088278318 doi "https://doi.org/10.1016/j.chemgeo.2015.02.020" @default.
- W2088278318 hasPublicationYear "2015" @default.
- W2088278318 type Work @default.
- W2088278318 sameAs 2088278318 @default.
- W2088278318 citedByCount "21" @default.
- W2088278318 countsByYear W20882783182015 @default.
- W2088278318 countsByYear W20882783182017 @default.
- W2088278318 countsByYear W20882783182018 @default.
- W2088278318 countsByYear W20882783182019 @default.
- W2088278318 countsByYear W20882783182021 @default.
- W2088278318 countsByYear W20882783182022 @default.
- W2088278318 countsByYear W20882783182023 @default.
- W2088278318 crossrefType "journal-article" @default.
- W2088278318 hasAuthorship W2088278318A5011065438 @default.
- W2088278318 hasAuthorship W2088278318A5014742790 @default.
- W2088278318 hasAuthorship W2088278318A5018166279 @default.