Matches in SemOpenAlex for { <https://semopenalex.org/work/W2088295233> ?p ?o ?g. }
- W2088295233 endingPage "2574" @default.
- W2088295233 startingPage "2556" @default.
- W2088295233 abstract "A three-dimensional multiscale computational model, platelet adhesive dynamics (PAD), is developed and applied in Part I and Part II articles to characterize and quantify key biophysical aspects of GPIbα-von-Willebrand-factor (vWF)-mediated interplatelet binding at high shear rates, a necessary and enabling step that initiates shear-induced platelet aggregation. In this article, an adhesive dynamics model of the transient aggregation of two unactivated platelets via GPIbα-vWF-GPIbα bridging is developed and integrated with the three-dimensional hydrodynamic flow model discussed in Part I. Platelet binding efficiencies predicted by PAD are in good agreement with platelet aggregation behavior observed experimentally, as documented in the literature. Deviations from average vWF ligand size or healthy GPIbα-vWF-A1 binding kinetics are observed in simulations to have significant effects on the dynamics of transient platelet aggregation, i.e., the efficiency of platelet aggregation and characteristics of bond failure, in ways that typify diseased conditions. The GPIbα-vWF-A1 bond formation rate is predicted to have piecewise linear dependence on the prevailing fluid shear rate, with a sharp transition in fluid shear dependency at 7200 s−1. Interplatelet bond force-loading is found to be complex and highly nonlinear. These results demonstrate PAD as a powerful predictive modeling tool for elucidating platelet adhesive phenomena under flow." @default.
- W2088295233 created "2016-06-24" @default.
- W2088295233 creator A5006299776 @default.
- W2088295233 creator A5081005464 @default.
- W2088295233 date "2008-09-01" @default.
- W2088295233 modified "2023-10-02" @default.
- W2088295233 title "Platelet Adhesive Dynamics. Part II: High Shear-Induced Transient Aggregation via GPIbα-vWF-GPIbα Bridging" @default.
- W2088295233 cites W1538504702 @default.
- W2088295233 cites W1538521595 @default.
- W2088295233 cites W1543884598 @default.
- W2088295233 cites W1601949983 @default.
- W2088295233 cites W164651796 @default.
- W2088295233 cites W1665591202 @default.
- W2088295233 cites W1963549684 @default.
- W2088295233 cites W1964151860 @default.
- W2088295233 cites W1970454636 @default.
- W2088295233 cites W1972287241 @default.
- W2088295233 cites W1974952307 @default.
- W2088295233 cites W1977686741 @default.
- W2088295233 cites W1978901116 @default.
- W2088295233 cites W1982037165 @default.
- W2088295233 cites W1984335380 @default.
- W2088295233 cites W1985173030 @default.
- W2088295233 cites W1990625704 @default.
- W2088295233 cites W1991202177 @default.
- W2088295233 cites W1992646081 @default.
- W2088295233 cites W1993486440 @default.
- W2088295233 cites W1993622985 @default.
- W2088295233 cites W1993860320 @default.
- W2088295233 cites W1995391213 @default.
- W2088295233 cites W2006006858 @default.
- W2088295233 cites W2016938853 @default.
- W2088295233 cites W2026646991 @default.
- W2088295233 cites W2028983608 @default.
- W2088295233 cites W2030181238 @default.
- W2088295233 cites W2030226022 @default.
- W2088295233 cites W2030665169 @default.
- W2088295233 cites W2033453659 @default.
- W2088295233 cites W2033821350 @default.
- W2088295233 cites W2036362341 @default.
- W2088295233 cites W2036417180 @default.
- W2088295233 cites W2036904069 @default.
- W2088295233 cites W2040472914 @default.
- W2088295233 cites W2043321286 @default.
- W2088295233 cites W2044505929 @default.
- W2088295233 cites W2052192720 @default.
- W2088295233 cites W2054326159 @default.
- W2088295233 cites W2055682122 @default.
- W2088295233 cites W2059836801 @default.
- W2088295233 cites W2060935167 @default.
- W2088295233 cites W2060937443 @default.
- W2088295233 cites W2067012210 @default.
- W2088295233 cites W2069572251 @default.
- W2088295233 cites W2072638013 @default.
- W2088295233 cites W2075013504 @default.
- W2088295233 cites W2075059983 @default.
- W2088295233 cites W2077924181 @default.
- W2088295233 cites W2088898414 @default.
- W2088295233 cites W2096694969 @default.
- W2088295233 cites W2115956404 @default.
- W2088295233 cites W2123211570 @default.
- W2088295233 cites W2123737096 @default.
- W2088295233 cites W2124357175 @default.
- W2088295233 cites W2129689526 @default.
- W2088295233 cites W2130151473 @default.
- W2088295233 cites W2136169984 @default.
- W2088295233 cites W2137827663 @default.
- W2088295233 cites W2142320136 @default.
- W2088295233 cites W2159251925 @default.
- W2088295233 cites W2169030528 @default.
- W2088295233 cites W2227357774 @default.
- W2088295233 cites W2259700787 @default.
- W2088295233 cites W2263006099 @default.
- W2088295233 cites W2270373849 @default.
- W2088295233 cites W2402213371 @default.
- W2088295233 cites W2437361408 @default.
- W2088295233 cites W4229526059 @default.
- W2088295233 cites W4232187952 @default.
- W2088295233 cites W4238304179 @default.
- W2088295233 cites W78479991 @default.
- W2088295233 doi "https://doi.org/10.1529/biophysj.107.128520" @default.
- W2088295233 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2517035" @default.
- W2088295233 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18515386" @default.
- W2088295233 hasPublicationYear "2008" @default.
- W2088295233 type Work @default.
- W2088295233 sameAs 2088295233 @default.
- W2088295233 citedByCount "79" @default.
- W2088295233 countsByYear W20882952332012 @default.
- W2088295233 countsByYear W20882952332013 @default.
- W2088295233 countsByYear W20882952332014 @default.
- W2088295233 countsByYear W20882952332015 @default.
- W2088295233 countsByYear W20882952332016 @default.
- W2088295233 countsByYear W20882952332017 @default.
- W2088295233 countsByYear W20882952332018 @default.
- W2088295233 countsByYear W20882952332019 @default.
- W2088295233 countsByYear W20882952332020 @default.
- W2088295233 countsByYear W20882952332021 @default.
- W2088295233 countsByYear W20882952332022 @default.