Matches in SemOpenAlex for { <https://semopenalex.org/work/W2088339630> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2088339630 endingPage "1351" @default.
- W2088339630 startingPage "1323" @default.
- W2088339630 abstract "Twitter is now well established as the world's second most important social media platform, after Facebook. Its 140-character updates are designed for brief messaging, and its network structures are kept relatively flat and simple: messages from users are either public and visible to all (even to unregistered visitors using the Twitter website), or private and visible only to approved ‘followers’ of the sender; there are no more complex definitions of degrees of connection (family, friends, friends of friends) as they are available in other social networks. Over time, Twitter users have developed simple, but effective mechanisms for working around these limitations: ‘#hashtags’, which enable the manual or automatic collation of all tweets containing the same #hashtag, as well allowing users to subscribe to content feeds that contain only those tweets which feature specific #hashtags; and ‘@replies’, which allow senders to direct public messages even to users whom they do not already follow. This paper documents a methodology for extracting public Twitter activity data around specific #hashtags, and for processing these data in order to analyse and visualize the @reply networks existing between participating users – both overall, as a static network, and over time, to highlight the dynamic structure of @reply conversations. Such visualizations enable us to highlight the shifting roles played by individual participants, as well as the response of the overall #hashtag community to new stimuli – such as the entry of new participants or the availability of new information. Over longer timeframes, it is also possible to identify different phases in the overall discussion, or the formation of distinct clusters of preferentially interacting participants." @default.
- W2088339630 created "2016-06-24" @default.
- W2088339630 creator A5025254950 @default.
- W2088339630 date "2012-12-01" @default.
- W2088339630 modified "2023-09-26" @default.
- W2088339630 title "HOW LONG IS A TWEET? MAPPING DYNAMIC CONVERSATION NETWORKS ON<i>TWITTER</i>USING GAWK AND GEPHI" @default.
- W2088339630 cites W2046804949 @default.
- W2088339630 cites W2068819488 @default.
- W2088339630 cites W2134533212 @default.
- W2088339630 cites W2152284345 @default.
- W2088339630 cites W3122139608 @default.
- W2088339630 cites W75967587 @default.
- W2088339630 doi "https://doi.org/10.1080/1369118x.2011.635214" @default.
- W2088339630 hasPublicationYear "2012" @default.
- W2088339630 type Work @default.
- W2088339630 sameAs 2088339630 @default.
- W2088339630 citedByCount "159" @default.
- W2088339630 countsByYear W20883396302012 @default.
- W2088339630 countsByYear W20883396302013 @default.
- W2088339630 countsByYear W20883396302014 @default.
- W2088339630 countsByYear W20883396302015 @default.
- W2088339630 countsByYear W20883396302016 @default.
- W2088339630 countsByYear W20883396302017 @default.
- W2088339630 countsByYear W20883396302018 @default.
- W2088339630 countsByYear W20883396302019 @default.
- W2088339630 countsByYear W20883396302020 @default.
- W2088339630 countsByYear W20883396302021 @default.
- W2088339630 countsByYear W20883396302022 @default.
- W2088339630 countsByYear W20883396302023 @default.
- W2088339630 crossrefType "journal-article" @default.
- W2088339630 hasAuthorship W2088339630A5025254950 @default.
- W2088339630 hasBestOaLocation W20883396302 @default.
- W2088339630 hasConcept C108827166 @default.
- W2088339630 hasConcept C111919701 @default.
- W2088339630 hasConcept C136764020 @default.
- W2088339630 hasConcept C15744967 @default.
- W2088339630 hasConcept C198104137 @default.
- W2088339630 hasConcept C2777200299 @default.
- W2088339630 hasConcept C41008148 @default.
- W2088339630 hasConcept C46312422 @default.
- W2088339630 hasConcept C4727928 @default.
- W2088339630 hasConcept C505175697 @default.
- W2088339630 hasConcept C518677369 @default.
- W2088339630 hasConcept C76155785 @default.
- W2088339630 hasConceptScore W2088339630C108827166 @default.
- W2088339630 hasConceptScore W2088339630C111919701 @default.
- W2088339630 hasConceptScore W2088339630C136764020 @default.
- W2088339630 hasConceptScore W2088339630C15744967 @default.
- W2088339630 hasConceptScore W2088339630C198104137 @default.
- W2088339630 hasConceptScore W2088339630C2777200299 @default.
- W2088339630 hasConceptScore W2088339630C41008148 @default.
- W2088339630 hasConceptScore W2088339630C46312422 @default.
- W2088339630 hasConceptScore W2088339630C4727928 @default.
- W2088339630 hasConceptScore W2088339630C505175697 @default.
- W2088339630 hasConceptScore W2088339630C518677369 @default.
- W2088339630 hasConceptScore W2088339630C76155785 @default.
- W2088339630 hasIssue "9" @default.
- W2088339630 hasLocation W20883396301 @default.
- W2088339630 hasLocation W20883396302 @default.
- W2088339630 hasOpenAccess W2088339630 @default.
- W2088339630 hasPrimaryLocation W20883396301 @default.
- W2088339630 hasRelatedWork W2065099951 @default.
- W2088339630 hasRelatedWork W2383674308 @default.
- W2088339630 hasRelatedWork W2496949096 @default.
- W2088339630 hasRelatedWork W2748952813 @default.
- W2088339630 hasRelatedWork W2810378791 @default.
- W2088339630 hasRelatedWork W3172156932 @default.
- W2088339630 hasRelatedWork W4214839785 @default.
- W2088339630 hasRelatedWork W4224094265 @default.
- W2088339630 hasRelatedWork W4311717257 @default.
- W2088339630 hasRelatedWork W2993423439 @default.
- W2088339630 hasVolume "15" @default.
- W2088339630 isParatext "false" @default.
- W2088339630 isRetracted "false" @default.
- W2088339630 magId "2088339630" @default.
- W2088339630 workType "article" @default.