Matches in SemOpenAlex for { <https://semopenalex.org/work/W2088339743> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2088339743 abstract "Let $G$ be a finite $p$-group. We prove that whenever the commuting probability of $G$ is greater than $(2p^2 + p - 2)/p^5$, the unramified Brauer group of the field of $G$-invariant functions is trivial. Equivalently, all relations between commutators in $G$ are consequences of some universal ones. The bound is best possible, and gives a global lower bound of $1/4$ for all finite groups. The result is attained by describing the structure of groups whose Bogomolov multipliers are nontrivial, and Bogomolov multipliers of all of their proper subgroups and quotients are trivial. Applications include a classification of $p$-groups of minimal order that have nontrivial Bogomolov multipliers and are of nilpotency class $2$, a nonprobabilistic criterion for the vanishing of the Bogomolov multiplier, and establishing a sequence of Bogomolov's absolute $gamma$-minimal factors which are $2$-groups of arbitrarily large nilpotency class, thus providing counterexamples to some of Bogomolov's claims. In relation to this, we fill a gap in the proof of triviality of Bogomolov multipliers of finite simple groups." @default.
- W2088339743 created "2016-06-24" @default.
- W2088339743 creator A5022103492 @default.
- W2088339743 creator A5033391512 @default.
- W2088339743 date "2013-07-24" @default.
- W2088339743 modified "2023-09-27" @default.
- W2088339743 title "Universal commutator relations, Bogomolov multipliers, and commuting probability" @default.
- W2088339743 cites W139963790 @default.
- W2088339743 cites W1489754080 @default.
- W2088339743 cites W1587464685 @default.
- W2088339743 cites W1618135988 @default.
- W2088339743 cites W1632869035 @default.
- W2088339743 cites W177373862 @default.
- W2088339743 cites W1968984956 @default.
- W2088339743 cites W1984452758 @default.
- W2088339743 cites W1994179999 @default.
- W2088339743 cites W2015873639 @default.
- W2088339743 cites W2017236027 @default.
- W2088339743 cites W2033723664 @default.
- W2088339743 cites W2065623296 @default.
- W2088339743 cites W2068312480 @default.
- W2088339743 cites W2070250768 @default.
- W2088339743 cites W2072013659 @default.
- W2088339743 cites W2087267598 @default.
- W2088339743 cites W2101089921 @default.
- W2088339743 cites W2317450749 @default.
- W2088339743 cites W2334985885 @default.
- W2088339743 cites W2021540843 @default.
- W2088339743 hasPublicationYear "2013" @default.
- W2088339743 type Work @default.
- W2088339743 sameAs 2088339743 @default.
- W2088339743 citedByCount "1" @default.
- W2088339743 countsByYear W20883397432014 @default.
- W2088339743 crossrefType "posted-content" @default.
- W2088339743 hasAuthorship W2088339743A5022103492 @default.
- W2088339743 hasAuthorship W2088339743A5033391512 @default.
- W2088339743 hasConcept C118615104 @default.
- W2088339743 hasConcept C124584101 @default.
- W2088339743 hasConcept C139719470 @default.
- W2088339743 hasConcept C162324750 @default.
- W2088339743 hasConcept C162838799 @default.
- W2088339743 hasConcept C178790620 @default.
- W2088339743 hasConcept C185592680 @default.
- W2088339743 hasConcept C190470478 @default.
- W2088339743 hasConcept C199422724 @default.
- W2088339743 hasConcept C202444582 @default.
- W2088339743 hasConcept C2778795013 @default.
- W2088339743 hasConcept C2779483109 @default.
- W2088339743 hasConcept C2781311116 @default.
- W2088339743 hasConcept C33923547 @default.
- W2088339743 hasConcept C37914503 @default.
- W2088339743 hasConceptScore W2088339743C118615104 @default.
- W2088339743 hasConceptScore W2088339743C124584101 @default.
- W2088339743 hasConceptScore W2088339743C139719470 @default.
- W2088339743 hasConceptScore W2088339743C162324750 @default.
- W2088339743 hasConceptScore W2088339743C162838799 @default.
- W2088339743 hasConceptScore W2088339743C178790620 @default.
- W2088339743 hasConceptScore W2088339743C185592680 @default.
- W2088339743 hasConceptScore W2088339743C190470478 @default.
- W2088339743 hasConceptScore W2088339743C199422724 @default.
- W2088339743 hasConceptScore W2088339743C202444582 @default.
- W2088339743 hasConceptScore W2088339743C2778795013 @default.
- W2088339743 hasConceptScore W2088339743C2779483109 @default.
- W2088339743 hasConceptScore W2088339743C2781311116 @default.
- W2088339743 hasConceptScore W2088339743C33923547 @default.
- W2088339743 hasConceptScore W2088339743C37914503 @default.
- W2088339743 hasLocation W20883397431 @default.
- W2088339743 hasOpenAccess W2088339743 @default.
- W2088339743 hasPrimaryLocation W20883397431 @default.
- W2088339743 hasRelatedWork W1814511084 @default.
- W2088339743 hasRelatedWork W1982626655 @default.
- W2088339743 hasRelatedWork W1989090790 @default.
- W2088339743 hasRelatedWork W2010968629 @default.
- W2088339743 hasRelatedWork W2011613047 @default.
- W2088339743 hasRelatedWork W2019850891 @default.
- W2088339743 hasRelatedWork W2027116843 @default.
- W2088339743 hasRelatedWork W2136700322 @default.
- W2088339743 hasRelatedWork W2466649245 @default.
- W2088339743 hasRelatedWork W2899361233 @default.
- W2088339743 hasRelatedWork W2922783390 @default.
- W2088339743 hasRelatedWork W2933837317 @default.
- W2088339743 hasRelatedWork W2950419259 @default.
- W2088339743 hasRelatedWork W2950885567 @default.
- W2088339743 hasRelatedWork W2963142281 @default.
- W2088339743 hasRelatedWork W2980529155 @default.
- W2088339743 hasRelatedWork W3129825272 @default.
- W2088339743 hasRelatedWork W3135846607 @default.
- W2088339743 hasRelatedWork W2739723623 @default.
- W2088339743 hasRelatedWork W3142933684 @default.
- W2088339743 isParatext "false" @default.
- W2088339743 isRetracted "false" @default.
- W2088339743 magId "2088339743" @default.
- W2088339743 workType "article" @default.