Matches in SemOpenAlex for { <https://semopenalex.org/work/W2088410151> ?p ?o ?g. }
- W2088410151 endingPage "8989" @default.
- W2088410151 startingPage "8978" @default.
- W2088410151 abstract "Partial Discharge (PD) pattern recognition has emerged as a subject of vital interest for the diagnosis of complex insulation system of power equipment to personnel handling power system utilities and researchers alike, since the phenomenon serves inherently as an excellent non-intrusive testing technique. Recently, the focus of researchers has shifted to the recognition of defects in insulation due to multiple PD sources, as it is often encountered during real-time PD measurements. A survey of research literature indicates clearly that the recognition of fully overlapped PD patterns is yet an unresolved issue and that techniques such as Mixed Weibull Function, Neural Network (NN), Wavelet Transformation, etc. have been attempted with only reasonable success. Since most digital PD online acquisition systems record data for a stipulated and considerable duration as mandated by international standards, the database is large. This poses substantial complexity in classification during the training phase of the NNs. These difficulties may be attributed to ill-conditioned data, non-Markovian nature of discharges, curse of dimensionality of the data, etc. Since training methods based on random selection of centers from a large training set of fixed size are found to be relatively insensitive and detrimental to classification in many cases, a Forward Orthogonal Least Square algorithm (FOLS) is utilized in order to reduce the number of hidden layer neurons and obtain a parsimonious yet optimal set of centers. This algorithm, in addition, obviates the need for a separate clustering method making the procedure inherently viable for on-line PD recognition. This research work proposes a novel approach of utilizing Radial Basis Probabilistic Neural Network (RBPNN) with FOLS center selection algorithm for classification of multiple PD sources. Exhaustive analysis is carried out to ascertain the efficacy of classification of the proposed RBPNN-FOLS algorithm to cater to large training data set. A detailed comparison of the performance of the proposed scheme with that of the standard version of Probabilistic Neural Network (PNN) and Heteroscedastic PNN (HRPNN) that was taken up for study by the authors in their previous work indicates firstly the effectiveness of FOLS algorithm in obtaining parsimonious centers, points out secondly the capability of the Radial Basis Probabilistic Neural Network (RBPNN) model to integrate the advantages of the Radial Basis Function Neural Network (RBFNN) and PNN in classifying multiple PD sources and finally throws light on the exceptional capability of the FOLS-RBPNN in discriminating the sources of PD due to varying applied voltages also." @default.
- W2088410151 created "2016-06-24" @default.
- W2088410151 creator A5016236182 @default.
- W2088410151 creator A5069587578 @default.
- W2088410151 date "2011-07-01" @default.
- W2088410151 modified "2023-10-14" @default.
- W2088410151 title "Orthogonal least square center selection technique – A robust scheme for multiple source Partial Discharge pattern recognition using Radial Basis Probabilistic Neural Network" @default.
- W2088410151 cites W1504805411 @default.
- W2088410151 cites W1733411546 @default.
- W2088410151 cites W1810953768 @default.
- W2088410151 cites W1966129222 @default.
- W2088410151 cites W1977737282 @default.
- W2088410151 cites W2001619934 @default.
- W2088410151 cites W2001736317 @default.
- W2088410151 cites W2010206770 @default.
- W2088410151 cites W2066453391 @default.
- W2088410151 cites W2068480257 @default.
- W2088410151 cites W2082981740 @default.
- W2088410151 cites W2090123586 @default.
- W2088410151 cites W2101505105 @default.
- W2088410151 cites W2104299962 @default.
- W2088410151 cites W2104662049 @default.
- W2088410151 cites W2106251780 @default.
- W2088410151 cites W2106345633 @default.
- W2088410151 cites W2108217496 @default.
- W2088410151 cites W2110608620 @default.
- W2088410151 cites W2110626476 @default.
- W2088410151 cites W2111866294 @default.
- W2088410151 cites W2114843529 @default.
- W2088410151 cites W2118294308 @default.
- W2088410151 cites W2120743928 @default.
- W2088410151 cites W2121946446 @default.
- W2088410151 cites W2124299183 @default.
- W2088410151 cites W2125130328 @default.
- W2088410151 cites W2129242579 @default.
- W2088410151 cites W2129562842 @default.
- W2088410151 cites W2131931322 @default.
- W2088410151 cites W2140373719 @default.
- W2088410151 cites W2155176760 @default.
- W2088410151 cites W2155399784 @default.
- W2088410151 cites W2155648921 @default.
- W2088410151 cites W2157540743 @default.
- W2088410151 cites W2161227676 @default.
- W2088410151 cites W2161660876 @default.
- W2088410151 cites W2165838880 @default.
- W2088410151 cites W2169554323 @default.
- W2088410151 cites W2170317102 @default.
- W2088410151 cites W2170808237 @default.
- W2088410151 cites W1984797182 @default.
- W2088410151 doi "https://doi.org/10.1016/j.eswa.2011.01.115" @default.
- W2088410151 hasPublicationYear "2011" @default.
- W2088410151 type Work @default.
- W2088410151 sameAs 2088410151 @default.
- W2088410151 citedByCount "25" @default.
- W2088410151 countsByYear W20884101512012 @default.
- W2088410151 countsByYear W20884101512013 @default.
- W2088410151 countsByYear W20884101512014 @default.
- W2088410151 countsByYear W20884101512015 @default.
- W2088410151 countsByYear W20884101512016 @default.
- W2088410151 countsByYear W20884101512017 @default.
- W2088410151 countsByYear W20884101512018 @default.
- W2088410151 countsByYear W20884101512020 @default.
- W2088410151 countsByYear W20884101512021 @default.
- W2088410151 countsByYear W20884101512022 @default.
- W2088410151 crossrefType "journal-article" @default.
- W2088410151 hasAuthorship W2088410151A5016236182 @default.
- W2088410151 hasAuthorship W2088410151A5069587578 @default.
- W2088410151 hasConcept C111030470 @default.
- W2088410151 hasConcept C119857082 @default.
- W2088410151 hasConcept C121332964 @default.
- W2088410151 hasConcept C124101348 @default.
- W2088410151 hasConcept C130143024 @default.
- W2088410151 hasConcept C153180895 @default.
- W2088410151 hasConcept C154945302 @default.
- W2088410151 hasConcept C165801399 @default.
- W2088410151 hasConcept C41008148 @default.
- W2088410151 hasConcept C49937458 @default.
- W2088410151 hasConcept C50644808 @default.
- W2088410151 hasConcept C62520636 @default.
- W2088410151 hasConcept C73555534 @default.
- W2088410151 hasConceptScore W2088410151C111030470 @default.
- W2088410151 hasConceptScore W2088410151C119857082 @default.
- W2088410151 hasConceptScore W2088410151C121332964 @default.
- W2088410151 hasConceptScore W2088410151C124101348 @default.
- W2088410151 hasConceptScore W2088410151C130143024 @default.
- W2088410151 hasConceptScore W2088410151C153180895 @default.
- W2088410151 hasConceptScore W2088410151C154945302 @default.
- W2088410151 hasConceptScore W2088410151C165801399 @default.
- W2088410151 hasConceptScore W2088410151C41008148 @default.
- W2088410151 hasConceptScore W2088410151C49937458 @default.
- W2088410151 hasConceptScore W2088410151C50644808 @default.
- W2088410151 hasConceptScore W2088410151C62520636 @default.
- W2088410151 hasConceptScore W2088410151C73555534 @default.
- W2088410151 hasIssue "7" @default.
- W2088410151 hasLocation W20884101511 @default.
- W2088410151 hasOpenAccess W2088410151 @default.
- W2088410151 hasPrimaryLocation W20884101511 @default.
- W2088410151 hasRelatedWork W2016042781 @default.