Matches in SemOpenAlex for { <https://semopenalex.org/work/W2088509631> ?p ?o ?g. }
- W2088509631 endingPage "68" @default.
- W2088509631 startingPage "53" @default.
- W2088509631 abstract "There is increasing evidence that the distribution of hydrometeorological variables such as average or extreme rainfall/runoff is modulated by modes of climate variability in many regions of the world. This paper presents a general spatio-temporal regional frequency analysis framework that allows quantifying the effect of climate variability on the distribution of at-site hydrometeorological variables. Climate effects are described through the parameters of a pre-specified distribution, by using regression models linking parameter values with time-varying covariates, such as climate indices. For the regional model copulas are used to incorporate spatial dependency. A Bayesian framework is used for inference and prediction, which enables quantification of parameter and predictive uncertainties. A regional approach enables better identification of climate effects which can be subject to high uncertainty using only at-site (local) analysis. Lastly, model comparison tools enable considering competing statistical hypotheses on the nature of climate effects and selecting the most relevant one. This modelling framework is applied to two case studies assessing the effect of El Niño Southern Oscillation (ENSO) on summer rainfall in Southeast Queensland. The first case study focuses on summer rainfall totals while the second analysis focuses on extremes using summer daily rainfall maxima. The Southern Oscillation Index (SOI), a measure of ENSO, is considered as a time-varying covariate. In order to account for different effects during La Niña and El Niño episodes, an asymmetric piecewise-linear regression is used to analyse the rainfall data using both local and regional models. During La Niña episodes, SOI has a significant effect on both summer rainfall totals and maxima. Conversely, during El Niño episodes, the SOI has little effect on rainfall. It is found that, during a strong La Niña, the most likely 1 in 100 year summer maximum daily rainfall for different sites estimated with the local asymmetric model can be 5–33% higher than the estimates from a local symmetric linear model and 20–50% higher than the estimates from a stationary model, albeit with significant uncertainty. Results from regional and local models are also compared: the former shows a great advantage in terms of uncertainty reduction and allows a better quantification of the ENSO effect on summer rainfall totals and maxima." @default.
- W2088509631 created "2016-06-24" @default.
- W2088509631 creator A5057168270 @default.
- W2088509631 creator A5078289757 @default.
- W2088509631 creator A5080649642 @default.
- W2088509631 creator A5081503838 @default.
- W2088509631 date "2014-05-01" @default.
- W2088509631 modified "2023-10-01" @default.
- W2088509631 title "A general regional frequency analysis framework for quantifying local-scale climate effects: A case study of ENSO effects on Southeast Queensland rainfall" @default.
- W2088509631 cites W1573124210 @default.
- W2088509631 cites W1624356652 @default.
- W2088509631 cites W1636828051 @default.
- W2088509631 cites W1637606195 @default.
- W2088509631 cites W1649253606 @default.
- W2088509631 cites W1656735157 @default.
- W2088509631 cites W1946639491 @default.
- W2088509631 cites W1953781065 @default.
- W2088509631 cites W1966175964 @default.
- W2088509631 cites W1974401372 @default.
- W2088509631 cites W1984326104 @default.
- W2088509631 cites W1985870758 @default.
- W2088509631 cites W1991141689 @default.
- W2088509631 cites W1996924693 @default.
- W2088509631 cites W1998364704 @default.
- W2088509631 cites W2004970125 @default.
- W2088509631 cites W2006265919 @default.
- W2088509631 cites W2006572277 @default.
- W2088509631 cites W2017387146 @default.
- W2088509631 cites W2019483410 @default.
- W2088509631 cites W2021408743 @default.
- W2088509631 cites W2021431193 @default.
- W2088509631 cites W2025269483 @default.
- W2088509631 cites W2027756992 @default.
- W2088509631 cites W2028257469 @default.
- W2088509631 cites W2029156323 @default.
- W2088509631 cites W2038259075 @default.
- W2088509631 cites W2040615344 @default.
- W2088509631 cites W2047030491 @default.
- W2088509631 cites W2051266976 @default.
- W2088509631 cites W2055551033 @default.
- W2088509631 cites W2057765075 @default.
- W2088509631 cites W2058905279 @default.
- W2088509631 cites W2061802350 @default.
- W2088509631 cites W2064720399 @default.
- W2088509631 cites W2070469752 @default.
- W2088509631 cites W2071769383 @default.
- W2088509631 cites W2073416275 @default.
- W2088509631 cites W2077926814 @default.
- W2088509631 cites W2080725494 @default.
- W2088509631 cites W2080739280 @default.
- W2088509631 cites W2082983485 @default.
- W2088509631 cites W2087012955 @default.
- W2088509631 cites W2087256217 @default.
- W2088509631 cites W2094538616 @default.
- W2088509631 cites W2103688971 @default.
- W2088509631 cites W2108292794 @default.
- W2088509631 cites W2113087669 @default.
- W2088509631 cites W2122456939 @default.
- W2088509631 cites W2129540265 @default.
- W2088509631 cites W2130091784 @default.
- W2088509631 cites W2131741023 @default.
- W2088509631 cites W2142635246 @default.
- W2088509631 cites W2155178670 @default.
- W2088509631 cites W2159689047 @default.
- W2088509631 cites W2168175751 @default.
- W2088509631 cites W2170207977 @default.
- W2088509631 cites W28176266 @default.
- W2088509631 cites W4211177544 @default.
- W2088509631 doi "https://doi.org/10.1016/j.jhydrol.2014.02.025" @default.
- W2088509631 hasPublicationYear "2014" @default.
- W2088509631 type Work @default.
- W2088509631 sameAs 2088509631 @default.
- W2088509631 citedByCount "65" @default.
- W2088509631 countsByYear W20885096312014 @default.
- W2088509631 countsByYear W20885096312015 @default.
- W2088509631 countsByYear W20885096312016 @default.
- W2088509631 countsByYear W20885096312017 @default.
- W2088509631 countsByYear W20885096312018 @default.
- W2088509631 countsByYear W20885096312019 @default.
- W2088509631 countsByYear W20885096312020 @default.
- W2088509631 countsByYear W20885096312021 @default.
- W2088509631 countsByYear W20885096312022 @default.
- W2088509631 countsByYear W20885096312023 @default.
- W2088509631 crossrefType "journal-article" @default.
- W2088509631 hasAuthorship W2088509631A5057168270 @default.
- W2088509631 hasAuthorship W2088509631A5078289757 @default.
- W2088509631 hasAuthorship W2088509631A5080649642 @default.
- W2088509631 hasAuthorship W2088509631A5081503838 @default.
- W2088509631 hasBestOaLocation W20885096312 @default.
- W2088509631 hasConcept C100725284 @default.
- W2088509631 hasConcept C105795698 @default.
- W2088509631 hasConcept C107054158 @default.
- W2088509631 hasConcept C111368507 @default.
- W2088509631 hasConcept C119043178 @default.
- W2088509631 hasConcept C127313418 @default.
- W2088509631 hasConcept C132651083 @default.
- W2088509631 hasConcept C149782125 @default.
- W2088509631 hasConcept C152877465 @default.