Matches in SemOpenAlex for { <https://semopenalex.org/work/W2088556552> ?p ?o ?g. }
- W2088556552 abstract "Learning how to separate benign confounders from prostate cancer is important because the imaging characteristics of these confounders are poorly understood. Furthermore, the typical representations of the MRI parameters might not be enough to allow discrimination. The diagnostic uncertainty this causes leads to a lower diagnostic accuracy. In this paper a new cascaded classifier is introduced to separate prostate cancer and benign confounders on MRI in conjunction with specific computer-extracted features to distinguish each of the benign classes (benign prostatic hyperplasia (BPH), inflammation, atrophy or prostatic intra-epithelial neoplasia (PIN). In this study we tried to (1) calculate different mathematical representations of the MRI parameters which more clearly express subtle differences between different classes, (2) learn which of the MRI image features will allow to distinguish specific benign confounders from prostate cancer, and (2) find the combination of computer-extracted MRI features to best discriminate cancer from the confounding classes using a cascaded classifier. One of the most important requirements for identifying MRI signatures for adenocarcinoma, BPH, atrophy, inflammation, and PIN is accurate mapping of the location and spatial extent of the confounder and cancer categories from ex vivo histopathology to MRI. Towards this end we employed an annotated prostatectomy data set of 31 patients, all of whom underwent a multi-parametric 3 Tesla MRI prior to radical prostatectomy. The prostatectomy slides were carefully co-registered to the corresponding MRI slices using an elastic registration technique. We extracted texture features from the T2-weighted imaging, pharmacokinetic features from the dynamic contrast enhanced imaging and diffusion features from the diffusion-weighted imaging for each of the confounder classes and prostate cancer. These features were selected because they form the mainstay of clinical diagnosis. Relevant features for each of the classes were selected using maximum relevance minimum redundancy feature selection, allowing us to perform classifier independent feature selection. The selected features were then incorporated in a cascading classifier, which can focus on easier sub-tasks at each stage, leaving the more difficult classification tasks for later stages. Results show that distinct features are relevant for each of the benign classes, for example the fraction of extra-vascular, extra-cellular space in a voxel is a clear discriminator for inflammation. Furthermore, the cascaded classifier outperforms both multi-class and one-shot classifiers in overall accuracy for discriminating confounders from cancer: 0.76 versus 0.71 and 0.62." @default.
- W2088556552 created "2016-06-24" @default.
- W2088556552 creator A5024003056 @default.
- W2088556552 creator A5027642699 @default.
- W2088556552 creator A5028140714 @default.
- W2088556552 creator A5049353584 @default.
- W2088556552 creator A5052666922 @default.
- W2088556552 creator A5054345200 @default.
- W2088556552 creator A5055697525 @default.
- W2088556552 creator A5066728211 @default.
- W2088556552 creator A5074386604 @default.
- W2088556552 date "2014-03-18" @default.
- W2088556552 modified "2023-10-18" @default.
- W2088556552 title "Distinguishing prostate cancer from benign confounders via a cascaded classifier on multi-parametric MRI" @default.
- W2088556552 cites W1986724697 @default.
- W2088556552 cites W2000539041 @default.
- W2088556552 cites W2001924303 @default.
- W2088556552 cites W2016494145 @default.
- W2088556552 cites W2020439157 @default.
- W2088556552 cites W2026481965 @default.
- W2088556552 cites W2027710019 @default.
- W2088556552 cites W2027967978 @default.
- W2088556552 cites W2046168168 @default.
- W2088556552 cites W2087828746 @default.
- W2088556552 cites W2105464873 @default.
- W2088556552 cites W2109923019 @default.
- W2088556552 cites W2110411550 @default.
- W2088556552 cites W2124539070 @default.
- W2088556552 cites W2134850935 @default.
- W2088556552 cites W2141967861 @default.
- W2088556552 cites W2145046071 @default.
- W2088556552 cites W2148312938 @default.
- W2088556552 cites W2154053567 @default.
- W2088556552 cites W2167565818 @default.
- W2088556552 cites W2444402913 @default.
- W2088556552 cites W2594972269 @default.
- W2088556552 cites W4206679801 @default.
- W2088556552 doi "https://doi.org/10.1117/12.2043751" @default.
- W2088556552 hasPublicationYear "2014" @default.
- W2088556552 type Work @default.
- W2088556552 sameAs 2088556552 @default.
- W2088556552 citedByCount "11" @default.
- W2088556552 countsByYear W20885565522014 @default.
- W2088556552 countsByYear W20885565522015 @default.
- W2088556552 countsByYear W20885565522016 @default.
- W2088556552 countsByYear W20885565522017 @default.
- W2088556552 countsByYear W20885565522018 @default.
- W2088556552 countsByYear W20885565522019 @default.
- W2088556552 countsByYear W20885565522021 @default.
- W2088556552 countsByYear W20885565522022 @default.
- W2088556552 crossrefType "proceedings-article" @default.
- W2088556552 hasAuthorship W2088556552A5024003056 @default.
- W2088556552 hasAuthorship W2088556552A5027642699 @default.
- W2088556552 hasAuthorship W2088556552A5028140714 @default.
- W2088556552 hasAuthorship W2088556552A5049353584 @default.
- W2088556552 hasAuthorship W2088556552A5052666922 @default.
- W2088556552 hasAuthorship W2088556552A5054345200 @default.
- W2088556552 hasAuthorship W2088556552A5055697525 @default.
- W2088556552 hasAuthorship W2088556552A5066728211 @default.
- W2088556552 hasAuthorship W2088556552A5074386604 @default.
- W2088556552 hasConcept C121608353 @default.
- W2088556552 hasConcept C126322002 @default.
- W2088556552 hasConcept C126838900 @default.
- W2088556552 hasConcept C142724271 @default.
- W2088556552 hasConcept C143409427 @default.
- W2088556552 hasConcept C154945302 @default.
- W2088556552 hasConcept C2776235491 @default.
- W2088556552 hasConcept C2779466945 @default.
- W2088556552 hasConcept C2780192828 @default.
- W2088556552 hasConcept C2781172350 @default.
- W2088556552 hasConcept C41008148 @default.
- W2088556552 hasConcept C71924100 @default.
- W2088556552 hasConcept C77350462 @default.
- W2088556552 hasConcept C95623464 @default.
- W2088556552 hasConceptScore W2088556552C121608353 @default.
- W2088556552 hasConceptScore W2088556552C126322002 @default.
- W2088556552 hasConceptScore W2088556552C126838900 @default.
- W2088556552 hasConceptScore W2088556552C142724271 @default.
- W2088556552 hasConceptScore W2088556552C143409427 @default.
- W2088556552 hasConceptScore W2088556552C154945302 @default.
- W2088556552 hasConceptScore W2088556552C2776235491 @default.
- W2088556552 hasConceptScore W2088556552C2779466945 @default.
- W2088556552 hasConceptScore W2088556552C2780192828 @default.
- W2088556552 hasConceptScore W2088556552C2781172350 @default.
- W2088556552 hasConceptScore W2088556552C41008148 @default.
- W2088556552 hasConceptScore W2088556552C71924100 @default.
- W2088556552 hasConceptScore W2088556552C77350462 @default.
- W2088556552 hasConceptScore W2088556552C95623464 @default.
- W2088556552 hasLocation W20885565521 @default.
- W2088556552 hasOpenAccess W2088556552 @default.
- W2088556552 hasPrimaryLocation W20885565521 @default.
- W2088556552 hasRelatedWork W108895284 @default.
- W2088556552 hasRelatedWork W1983636976 @default.
- W2088556552 hasRelatedWork W2088520467 @default.
- W2088556552 hasRelatedWork W2094977608 @default.
- W2088556552 hasRelatedWork W2125911452 @default.
- W2088556552 hasRelatedWork W2168188158 @default.
- W2088556552 hasRelatedWork W2273540743 @default.
- W2088556552 hasRelatedWork W2410191098 @default.
- W2088556552 hasRelatedWork W2599589207 @default.