Matches in SemOpenAlex for { <https://semopenalex.org/work/W2088577020> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2088577020 abstract "The lack of sufficient training data is the limiting factor for many Machine Learning applications in Computational Biology. If data is available for several different but related problem domains, Multitask Learning algorithms can be used to learn a model based on all available information. In Bioinformatics, many problems can be cast into the Multitask Learning scenario by incorporating data from several organisms. However, combining information from several tasks requires careful consideration of the degree of similarity between tasks. Our proposed method simultaneously learns or refines the similarity between tasks along with the Multitask Learning classifier. This is done by formulating the Multitask Learning problem as Multiple Kernel Learning, using the recently published q-Norm MKL algorithm. We demonstrate the performance of our method on two problems from Computational Biology. First, we show that our method is able to improve performance on a splice site dataset with given hierarchical task structure by refining the task relationships. Second, we consider an MHC-I dataset, for which we assume no knowledge about the degree of task relatedness. Here, we are able to learn the task similarities ab initio along with the Multitask classifiers. In both cases, we outperform baseline methods that we compare against. We present a novel approach to Multitask Learning that is capable of learning task similarity along with the classifiers. The framework is very general as it allows to incorporate prior knowledge about tasks relationships if available, but is also able to identify task similarities in absence of such prior information. Both variants show promising results in applications from Computational Biology." @default.
- W2088577020 created "2016-06-24" @default.
- W2088577020 creator A5035416263 @default.
- W2088577020 creator A5048359140 @default.
- W2088577020 creator A5078378799 @default.
- W2088577020 creator A5085471281 @default.
- W2088577020 date "2010-10-01" @default.
- W2088577020 modified "2023-10-15" @default.
- W2088577020 title "Inferring latent task structure for Multitask Learning by Multiple Kernel Learning" @default.
- W2088577020 cites W1526741802 @default.
- W2088577020 cites W2100549317 @default.
- W2088577020 cites W2143104527 @default.
- W2088577020 cites W2144185370 @default.
- W2088577020 cites W2913340405 @default.
- W2088577020 cites W4230674625 @default.
- W2088577020 doi "https://doi.org/10.1186/1471-2105-11-s8-s5" @default.
- W2088577020 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2966292" @default.
- W2088577020 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21034430" @default.
- W2088577020 hasPublicationYear "2010" @default.
- W2088577020 type Work @default.
- W2088577020 sameAs 2088577020 @default.
- W2088577020 citedByCount "35" @default.
- W2088577020 countsByYear W20885770202012 @default.
- W2088577020 countsByYear W20885770202013 @default.
- W2088577020 countsByYear W20885770202014 @default.
- W2088577020 countsByYear W20885770202015 @default.
- W2088577020 countsByYear W20885770202016 @default.
- W2088577020 countsByYear W20885770202017 @default.
- W2088577020 countsByYear W20885770202018 @default.
- W2088577020 countsByYear W20885770202019 @default.
- W2088577020 countsByYear W20885770202020 @default.
- W2088577020 countsByYear W20885770202021 @default.
- W2088577020 countsByYear W20885770202022 @default.
- W2088577020 countsByYear W20885770202023 @default.
- W2088577020 crossrefType "journal-article" @default.
- W2088577020 hasAuthorship W2088577020A5035416263 @default.
- W2088577020 hasAuthorship W2088577020A5048359140 @default.
- W2088577020 hasAuthorship W2088577020A5078378799 @default.
- W2088577020 hasAuthorship W2088577020A5085471281 @default.
- W2088577020 hasBestOaLocation W20885770201 @default.
- W2088577020 hasConcept C103278499 @default.
- W2088577020 hasConcept C115961682 @default.
- W2088577020 hasConcept C119857082 @default.
- W2088577020 hasConcept C122280245 @default.
- W2088577020 hasConcept C12267149 @default.
- W2088577020 hasConcept C154945302 @default.
- W2088577020 hasConcept C162324750 @default.
- W2088577020 hasConcept C187736073 @default.
- W2088577020 hasConcept C24138899 @default.
- W2088577020 hasConcept C2776879701 @default.
- W2088577020 hasConcept C2780451532 @default.
- W2088577020 hasConcept C28006648 @default.
- W2088577020 hasConcept C41008148 @default.
- W2088577020 hasConcept C58973888 @default.
- W2088577020 hasConcept C95623464 @default.
- W2088577020 hasConceptScore W2088577020C103278499 @default.
- W2088577020 hasConceptScore W2088577020C115961682 @default.
- W2088577020 hasConceptScore W2088577020C119857082 @default.
- W2088577020 hasConceptScore W2088577020C122280245 @default.
- W2088577020 hasConceptScore W2088577020C12267149 @default.
- W2088577020 hasConceptScore W2088577020C154945302 @default.
- W2088577020 hasConceptScore W2088577020C162324750 @default.
- W2088577020 hasConceptScore W2088577020C187736073 @default.
- W2088577020 hasConceptScore W2088577020C24138899 @default.
- W2088577020 hasConceptScore W2088577020C2776879701 @default.
- W2088577020 hasConceptScore W2088577020C2780451532 @default.
- W2088577020 hasConceptScore W2088577020C28006648 @default.
- W2088577020 hasConceptScore W2088577020C41008148 @default.
- W2088577020 hasConceptScore W2088577020C58973888 @default.
- W2088577020 hasConceptScore W2088577020C95623464 @default.
- W2088577020 hasIssue "S8" @default.
- W2088577020 hasLocation W20885770201 @default.
- W2088577020 hasLocation W20885770202 @default.
- W2088577020 hasLocation W20885770203 @default.
- W2088577020 hasLocation W20885770204 @default.
- W2088577020 hasOpenAccess W2088577020 @default.
- W2088577020 hasPrimaryLocation W20885770201 @default.
- W2088577020 hasRelatedWork W184546935 @default.
- W2088577020 hasRelatedWork W2098239572 @default.
- W2088577020 hasRelatedWork W2148252020 @default.
- W2088577020 hasRelatedWork W2150890437 @default.
- W2088577020 hasRelatedWork W2538661024 @default.
- W2088577020 hasRelatedWork W2725311638 @default.
- W2088577020 hasRelatedWork W2913340405 @default.
- W2088577020 hasRelatedWork W2914746235 @default.
- W2088577020 hasRelatedWork W2953400952 @default.
- W2088577020 hasRelatedWork W4307478737 @default.
- W2088577020 hasVolume "11" @default.
- W2088577020 isParatext "false" @default.
- W2088577020 isRetracted "false" @default.
- W2088577020 magId "2088577020" @default.
- W2088577020 workType "article" @default.