Matches in SemOpenAlex for { <https://semopenalex.org/work/W2088600910> ?p ?o ?g. }
- W2088600910 endingPage "24" @default.
- W2088600910 startingPage "14" @default.
- W2088600910 abstract "Fischer–Tropsch synthesis is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen into hydrocarbons. In this study, application of FTS is studied in a wide range of synthesis gas conversions. Artificial neural networks (ANN) were used to predict the molar percentage of CH4, CO2 and CO in the Fischer–Tropsch process of natural gas and also genetic algorithm (GA) was applied to obtain the optimum values of operational parameters. The input parameters consist of a 3-dimensions vector which includes the reaction time, operating pressure and temperature and also the output was molar percentage of CH4, CO2 and CO. Topology and decision parameters have been calculated by trial and error and acceptable correlation coefficients (R2 = 0.94 for CH4, R2 = 0.93 for CO2 and R2 = 0.96 for CO) were obtained. Also the results obtained by sensitivity analysis represent that operation time has significant influence on molar percentage of CH4 as desired product with respect to other operational parameters. Finally the results justify that GA-ANN could be effectively used for FTS as a powerful estimation technique." @default.
- W2088600910 created "2016-06-24" @default.
- W2088600910 creator A5009241181 @default.
- W2088600910 creator A5019025700 @default.
- W2088600910 creator A5022296444 @default.
- W2088600910 creator A5063415111 @default.
- W2088600910 creator A5064477580 @default.
- W2088600910 creator A5075639893 @default.
- W2088600910 creator A5076249789 @default.
- W2088600910 creator A5088185657 @default.
- W2088600910 date "2013-01-01" @default.
- W2088600910 modified "2023-10-17" @default.
- W2088600910 title "Modeling and optimization of Fischer–Tropsch synthesis in the presence of Co (III)/Al2O3 catalyst using artificial neural networks and genetic algorithm" @default.
- W2088600910 cites W1970338077 @default.
- W2088600910 cites W1978501874 @default.
- W2088600910 cites W1979590044 @default.
- W2088600910 cites W1983803031 @default.
- W2088600910 cites W1987389910 @default.
- W2088600910 cites W1991319790 @default.
- W2088600910 cites W2001129580 @default.
- W2088600910 cites W2003252576 @default.
- W2088600910 cites W2008682787 @default.
- W2088600910 cites W2015124413 @default.
- W2088600910 cites W2015150103 @default.
- W2088600910 cites W2020631260 @default.
- W2088600910 cites W2025769326 @default.
- W2088600910 cites W2028369238 @default.
- W2088600910 cites W2030474209 @default.
- W2088600910 cites W2035773644 @default.
- W2088600910 cites W2037925698 @default.
- W2088600910 cites W2038792106 @default.
- W2088600910 cites W2046711139 @default.
- W2088600910 cites W2049930170 @default.
- W2088600910 cites W2052505511 @default.
- W2088600910 cites W2053025138 @default.
- W2088600910 cites W2058374121 @default.
- W2088600910 cites W2064456284 @default.
- W2088600910 cites W2064732182 @default.
- W2088600910 cites W2065928586 @default.
- W2088600910 cites W2070371116 @default.
- W2088600910 cites W2071453612 @default.
- W2088600910 cites W2079438887 @default.
- W2088600910 cites W2086472796 @default.
- W2088600910 cites W2143956139 @default.
- W2088600910 cites W2158779301 @default.
- W2088600910 doi "https://doi.org/10.1016/j.jngse.2012.09.001" @default.
- W2088600910 hasPublicationYear "2013" @default.
- W2088600910 type Work @default.
- W2088600910 sameAs 2088600910 @default.
- W2088600910 citedByCount "43" @default.
- W2088600910 countsByYear W20886009102013 @default.
- W2088600910 countsByYear W20886009102014 @default.
- W2088600910 countsByYear W20886009102015 @default.
- W2088600910 countsByYear W20886009102016 @default.
- W2088600910 countsByYear W20886009102017 @default.
- W2088600910 countsByYear W20886009102018 @default.
- W2088600910 countsByYear W20886009102019 @default.
- W2088600910 countsByYear W20886009102020 @default.
- W2088600910 countsByYear W20886009102021 @default.
- W2088600910 countsByYear W20886009102022 @default.
- W2088600910 countsByYear W20886009102023 @default.
- W2088600910 crossrefType "journal-article" @default.
- W2088600910 hasAuthorship W2088600910A5009241181 @default.
- W2088600910 hasAuthorship W2088600910A5019025700 @default.
- W2088600910 hasAuthorship W2088600910A5022296444 @default.
- W2088600910 hasAuthorship W2088600910A5063415111 @default.
- W2088600910 hasAuthorship W2088600910A5064477580 @default.
- W2088600910 hasAuthorship W2088600910A5075639893 @default.
- W2088600910 hasAuthorship W2088600910A5076249789 @default.
- W2088600910 hasAuthorship W2088600910A5088185657 @default.
- W2088600910 hasConcept C118792377 @default.
- W2088600910 hasConcept C119857082 @default.
- W2088600910 hasConcept C126255220 @default.
- W2088600910 hasConcept C127413603 @default.
- W2088600910 hasConcept C161790260 @default.
- W2088600910 hasConcept C178790620 @default.
- W2088600910 hasConcept C185592680 @default.
- W2088600910 hasConcept C186060115 @default.
- W2088600910 hasConcept C192562407 @default.
- W2088600910 hasConcept C194439259 @default.
- W2088600910 hasConcept C21200559 @default.
- W2088600910 hasConcept C21880701 @default.
- W2088600910 hasConcept C24326235 @default.
- W2088600910 hasConcept C33923547 @default.
- W2088600910 hasConcept C41008148 @default.
- W2088600910 hasConcept C50644808 @default.
- W2088600910 hasConcept C512735826 @default.
- W2088600910 hasConcept C59427239 @default.
- W2088600910 hasConcept C62192006 @default.
- W2088600910 hasConcept C86803240 @default.
- W2088600910 hasConcept C8880873 @default.
- W2088600910 hasConceptScore W2088600910C118792377 @default.
- W2088600910 hasConceptScore W2088600910C119857082 @default.
- W2088600910 hasConceptScore W2088600910C126255220 @default.
- W2088600910 hasConceptScore W2088600910C127413603 @default.
- W2088600910 hasConceptScore W2088600910C161790260 @default.
- W2088600910 hasConceptScore W2088600910C178790620 @default.
- W2088600910 hasConceptScore W2088600910C185592680 @default.