Matches in SemOpenAlex for { <https://semopenalex.org/work/W2088843485> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2088843485 abstract "Dictionary learning (DL) for sparse coding has shown promising results in classification tasks, while how to adaptively build the relationship between dictionary atoms and class labels is still an important open question. The existing dictionary learning approaches simply fix a dictionary atom to be either class-specific or shared by all classes beforehand, ignoring that the relationship needs to be updated during DL. To address this issue, in this paper we propose a novel latent dictionary learning (LDL) method to learn a discriminative dictionary and build its relationship to class labels adaptively. Each dictionary atom is jointly learned with a latent vector, which associates this atom to the representation of different classes. More specifically, we introduce a latent representation model, in which discrimination of the learned dictionary is exploited via minimizing the within-class scatter of coding coefficients and the latent-value weighted dictionary coherence. The optimal solution is efficiently obtained by the proposed solving algorithm. Correspondingly, a latent sparse representation based classifier is also presented. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse representation and dictionary learning approaches for action, gender and face recognition." @default.
- W2088843485 created "2016-06-24" @default.
- W2088843485 creator A5001254143 @default.
- W2088843485 creator A5004461884 @default.
- W2088843485 creator A5037873810 @default.
- W2088843485 creator A5078838951 @default.
- W2088843485 date "2014-06-01" @default.
- W2088843485 modified "2023-10-17" @default.
- W2088843485 title "Latent Dictionary Learning for Sparse Representation Based Classification" @default.
- W2088843485 cites W1963932623 @default.
- W2088843485 cites W1972959470 @default.
- W2088843485 cites W1982405594 @default.
- W2088843485 cites W1992405901 @default.
- W2088843485 cites W2027805700 @default.
- W2088843485 cites W2027922120 @default.
- W2088843485 cites W2056380775 @default.
- W2088843485 cites W2063153269 @default.
- W2088843485 cites W2073605108 @default.
- W2088843485 cites W2082855665 @default.
- W2088843485 cites W2086962710 @default.
- W2088843485 cites W2101194540 @default.
- W2088843485 cites W2105464873 @default.
- W2088843485 cites W2129812935 @default.
- W2088843485 cites W2137659841 @default.
- W2088843485 cites W2145889472 @default.
- W2088843485 cites W2153663612 @default.
- W2088843485 cites W2157785665 @default.
- W2088843485 cites W2160547390 @default.
- W2088843485 cites W2162583786 @default.
- W2088843485 cites W2163112044 @default.
- W2088843485 cites W2163398148 @default.
- W2088843485 doi "https://doi.org/10.1109/cvpr.2014.527" @default.
- W2088843485 hasPublicationYear "2014" @default.
- W2088843485 type Work @default.
- W2088843485 sameAs 2088843485 @default.
- W2088843485 citedByCount "66" @default.
- W2088843485 countsByYear W20888434852015 @default.
- W2088843485 countsByYear W20888434852016 @default.
- W2088843485 countsByYear W20888434852017 @default.
- W2088843485 countsByYear W20888434852018 @default.
- W2088843485 countsByYear W20888434852019 @default.
- W2088843485 countsByYear W20888434852020 @default.
- W2088843485 countsByYear W20888434852021 @default.
- W2088843485 countsByYear W20888434852022 @default.
- W2088843485 crossrefType "proceedings-article" @default.
- W2088843485 hasAuthorship W2088843485A5001254143 @default.
- W2088843485 hasAuthorship W2088843485A5004461884 @default.
- W2088843485 hasAuthorship W2088843485A5037873810 @default.
- W2088843485 hasAuthorship W2088843485A5078838951 @default.
- W2088843485 hasConcept C119857082 @default.
- W2088843485 hasConcept C124066611 @default.
- W2088843485 hasConcept C153180895 @default.
- W2088843485 hasConcept C154771677 @default.
- W2088843485 hasConcept C154945302 @default.
- W2088843485 hasConcept C17744445 @default.
- W2088843485 hasConcept C199539241 @default.
- W2088843485 hasConcept C2776359362 @default.
- W2088843485 hasConcept C41008148 @default.
- W2088843485 hasConcept C77637269 @default.
- W2088843485 hasConcept C94625758 @default.
- W2088843485 hasConcept C95623464 @default.
- W2088843485 hasConcept C97931131 @default.
- W2088843485 hasConceptScore W2088843485C119857082 @default.
- W2088843485 hasConceptScore W2088843485C124066611 @default.
- W2088843485 hasConceptScore W2088843485C153180895 @default.
- W2088843485 hasConceptScore W2088843485C154771677 @default.
- W2088843485 hasConceptScore W2088843485C154945302 @default.
- W2088843485 hasConceptScore W2088843485C17744445 @default.
- W2088843485 hasConceptScore W2088843485C199539241 @default.
- W2088843485 hasConceptScore W2088843485C2776359362 @default.
- W2088843485 hasConceptScore W2088843485C41008148 @default.
- W2088843485 hasConceptScore W2088843485C77637269 @default.
- W2088843485 hasConceptScore W2088843485C94625758 @default.
- W2088843485 hasConceptScore W2088843485C95623464 @default.
- W2088843485 hasConceptScore W2088843485C97931131 @default.
- W2088843485 hasLocation W20888434851 @default.
- W2088843485 hasOpenAccess W2088843485 @default.
- W2088843485 hasPrimaryLocation W20888434851 @default.
- W2088843485 hasRelatedWork W1982405594 @default.
- W2088843485 hasRelatedWork W2011292423 @default.
- W2088843485 hasRelatedWork W2034369645 @default.
- W2088843485 hasRelatedWork W2157785665 @default.
- W2088843485 hasRelatedWork W2313529869 @default.
- W2088843485 hasRelatedWork W2544746035 @default.
- W2088843485 hasRelatedWork W2775942774 @default.
- W2088843485 hasRelatedWork W2789775441 @default.
- W2088843485 hasRelatedWork W2883175612 @default.
- W2088843485 hasRelatedWork W2966529942 @default.
- W2088843485 isParatext "false" @default.
- W2088843485 isRetracted "false" @default.
- W2088843485 magId "2088843485" @default.
- W2088843485 workType "article" @default.