Matches in SemOpenAlex for { <https://semopenalex.org/work/W2089016492> ?p ?o ?g. }
- W2089016492 endingPage "326" @default.
- W2089016492 startingPage "319" @default.
- W2089016492 abstract "Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling induces the expression of Runx2, a key transcription factor in osteoblast differentiation, but little is known about the molecular signaling mechanisms that mediate this. Here we examined the role of the protein kinase C (PKC) pathway in regulating Runx2 gene expression and its transactivation function. Treatment with FGF2 or FGF4, or transfection with a vector expressing a mutant FGFR2 that is constitutively activated in the absence of ligand, strongly stimulates Runx2 expression. Electrophoretic mobility shift assays also showed that FGF2 treatment increases the specific binding of Runx2 to the cognate response element in the osteocalcin gene promoter. Blocking PKC completely inhibited FGF2-induced Runx2 expression, whereas mitogen-activate protein kinase inhibitors had no effect. The FGF/FGFR-stimulated 6xOSE2 promoter activity was also blocked by inhibiting PKC, as was the FGF2 stimulation of the DNA-binding activity of Runx2. Experiments with PKC isoform-specific inhibitors and dominant negative isoforms of PKC indicate that PKCδ is one of key isoforms involved in the FGF2-stimulated Runx2 expression. In addition, experiments with Runx2-knockout cells showed that, although the PKC pathway largely regulates FGF2-stimulated Runx2 activity by up-regulating Runx2 expression, it also modifies Runx2 protein post-translationally and thereby increases its transcriptional activity. Thus, we show for the first time that FGF/FGFR signaling stimulates the DNA-binding and transcriptional activities of Runx2 as well as its expression, and these are largely regulated by the PKC pathway. Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling induces the expression of Runx2, a key transcription factor in osteoblast differentiation, but little is known about the molecular signaling mechanisms that mediate this. Here we examined the role of the protein kinase C (PKC) pathway in regulating Runx2 gene expression and its transactivation function. Treatment with FGF2 or FGF4, or transfection with a vector expressing a mutant FGFR2 that is constitutively activated in the absence of ligand, strongly stimulates Runx2 expression. Electrophoretic mobility shift assays also showed that FGF2 treatment increases the specific binding of Runx2 to the cognate response element in the osteocalcin gene promoter. Blocking PKC completely inhibited FGF2-induced Runx2 expression, whereas mitogen-activate protein kinase inhibitors had no effect. The FGF/FGFR-stimulated 6xOSE2 promoter activity was also blocked by inhibiting PKC, as was the FGF2 stimulation of the DNA-binding activity of Runx2. Experiments with PKC isoform-specific inhibitors and dominant negative isoforms of PKC indicate that PKCδ is one of key isoforms involved in the FGF2-stimulated Runx2 expression. In addition, experiments with Runx2-knockout cells showed that, although the PKC pathway largely regulates FGF2-stimulated Runx2 activity by up-regulating Runx2 expression, it also modifies Runx2 protein post-translationally and thereby increases its transcriptional activity. Thus, we show for the first time that FGF/FGFR signaling stimulates the DNA-binding and transcriptional activities of Runx2 as well as its expression, and these are largely regulated by the PKC pathway. fibroblast growth factor FGF receptor mitogen-activated protein kinase extracellular signal-regulated kinase MAPK/Erk kinase protein kinase C Runt-related transcription factor 2 bovine serum albumin α-minimal essential medium Dulbecco's modified Eagle's medium fetal bovine serum phosphate-buffered saline 3-[morpholino]propanesulfonic acid osteoblast-specific core binding sequences diacylglycerol Fibroblast growth factors (FGFs)1 are important autocrine/paracrine signaling molecules involved in intramembranous and endochondral bone formation. They include FGF2, which is a strong mitogen for bone-derived cells (1Globus R.K. Plouet J. Gospodarowicz D. Endocrinology. 1988; 124: 1539-1547Crossref Scopus (266) Google Scholar, 2Long M.W. Robin J.A. Ashcraft E.A. Mann K.G. J. Clin. Invest. 1995; 95: 881-887Crossref PubMed Google Scholar, 3Pitaru S. Kotev-Emeth S. Noff D. Kaffuler S. Savion N. J. Bone Miner. Res. 1993; 8: 919-929Crossref PubMed Scopus (183) Google Scholar, 4Rodan S.B. Wesolowski G. Thomas K.A. Yoon K. Rodan G.A. Conn. Tissue Res. 1989; 20: 283-288Crossref PubMed Scopus (118) Google Scholar, 5Cannalis E. Centrella M. MacCarthy T.L. J. Clin. Invest. 1988; 81: 1572-1577Crossref PubMed Scopus (327) Google Scholar). Disruption of theFGF2 gene results in decreased bone formation (6Montero A. Okada Y. Tomita M. Ito M. Tsurukami H. Nakamura T. Doetschman T. Coffin J.D. Hurley M.M. J. Clin. Invest. 2000; 105: 1085-1093Crossref PubMed Scopus (400) Google Scholar), whereas overexpression of FGF2 in transgenic mice causes achondroplasia, the premature transformation of cartilage to bone (7Coffin J.D. Florkiewicz R.Z. Neumann J. Mort-Hopkins T. Dorn 2nd, G.W. Lightfoot P. German R. Howles P.N. Kier A. O'Toole B.A. Mol. Biol. Cell. 1995; 6: 1861-1873Crossref PubMed Scopus (259) Google Scholar). Constitutive active mutations of FGF receptors (FGFR) 1, 2, and 3 caused a congenital abnormality, craniosynostosis, which is characterized by premature osseous obliteration of cranial suture (8Muenke M. Schell U. Hehr A. Robin N.H. Losken H.W. Schinzed A. Pulleyn L.J. Nat. Genet. 1994; 8: 269-273Crossref PubMed Scopus (537) Google Scholar, 9Reardon W. Winter R.M. Rutland P. Pulleyn L.J. Jones B.M. Malcolm S. Nat. Genet. 1994; 8: 98-103Crossref PubMed Scopus (608) Google Scholar). In osteoblasts, the interaction of FGFs like FGF2 with their FGFRs induces receptor dimerization and autophosphorylation of receptors, which in turn activates multiple signal transduction pathways, including those involving mitogen-activated protein kinases (MAPKs) and protein kinase C (PKC) (10Chaudhary L.R. Avioli L.V. Biochem. Biophys. Res. Commun. 1997; 238: 134-139Crossref PubMed Scopus (70) Google Scholar, 11Kozawa O. Tokuda H. Matsuno H. Uematsu T. J. Cell. Biochem. 1999; 74: 479-485Crossref PubMed Scopus (48) Google Scholar, 12Suzuki A. Palmer G. Bonjour J.P. Caverzasio J. J. Bone Miner. Res. 2000; 15: 95-102Crossref PubMed Scopus (62) Google Scholar, 13Debiais F. Lemonnier J. Hay E. Delannoy P. Caverzasio J. Marie P.J. J. Cell. Biochem. 2001; 81: 68-81Crossref PubMed Scopus (71) Google Scholar). However, the signaling pathways that mediate the biological actions of FGF/FGFR in osteoblasts remain unclear.Runt-related transcription factor 2 (Runx2), previously known asCbfa1/Pebp2αA/AML3, plays an essential role in osteoblast differentiation (14Ducy P. Zhang R. Geoffroy V. Ridall A.L. Karsenty G. Cell. 1997; 89: 747-754Abstract Full Text Full Text PDF PubMed Scopus (3607) Google Scholar, 15Komori T. Yagi H. Nomura S. Yamaguchi A. Sasaki K. Deguchi K. Shimizu Y. Bronson R.T. Gao Y.H. Inada M. Sato M. Okamoto R. Kitamura Y. Yoshiki S. Kishimoto T. Cell. 1997; 89: 755-764Abstract Full Text Full Text PDF PubMed Scopus (3599) Google Scholar, 16Otto F. Thornell A.P. Crompton T. Denzel A. Gilmour K.C. Rosewell I.R. Stamp G.W. Beddington R.S. Mundlos S. Olsen B. Selby P.B. Owen M.J. Cell. 1997; 89: 765-771Abstract Full Text Full Text PDF PubMed Scopus (2378) Google Scholar).Runx2-knockout animals display complete bone loss because of arrested osteoblast maturation (15Komori T. Yagi H. Nomura S. Yamaguchi A. Sasaki K. Deguchi K. Shimizu Y. Bronson R.T. Gao Y.H. Inada M. Sato M. Okamoto R. Kitamura Y. Yoshiki S. Kishimoto T. Cell. 1997; 89: 755-764Abstract Full Text Full Text PDF PubMed Scopus (3599) Google Scholar) while heterozygotes develop cleidocranial dysplasia, which is characterized by delayed ossification (16Otto F. Thornell A.P. Crompton T. Denzel A. Gilmour K.C. Rosewell I.R. Stamp G.W. Beddington R.S. Mundlos S. Olsen B. Selby P.B. Owen M.J. Cell. 1997; 89: 765-771Abstract Full Text Full Text PDF PubMed Scopus (2378) Google Scholar, 17Mundlos S. Otto F. Mundlos C. Mulliken J.B. Aylsworth A.S. Albright S. Lindhout D. Cole W.G. Henn W. Knoll J.H.M. Owen M.J. Mertelsmann R. Zabel B.U. Olsen B.R. Cell. 1997; 89: 773-779Abstract Full Text Full Text PDF PubMed Scopus (1264) Google Scholar). Several reports show that Runx2 regulates the expression of bone marker genes during osteoblast differentiation (14Ducy P. Zhang R. Geoffroy V. Ridall A.L. Karsenty G. Cell. 1997; 89: 747-754Abstract Full Text Full Text PDF PubMed Scopus (3607) Google Scholar, 18Banerjee G. McCabe L.R. Choi J.Y. Hiebert S.W. Stein J.L. Stein G.S. Lian J.B. J. Cell. Biochem. 1997; 66: 1-8Crossref PubMed Scopus (396) Google Scholar, 19Ji C. Casinghino S. Chang D.J. Chen Y. Javed A. Ito Y. Hiebert S.W. Lian J.B. Stein G.S. McCarthy T.L. Centrella M. J. Cell. Biochem. 1998; 69: 353-363Crossref PubMed Scopus (87) Google Scholar). In our previous report, we investigated the expression pattern of Runx2 during intramembranous bone formation and found that Runx2 expression is needed for all steps of osteoblast differentiation, namely, from the commitment to differentiate through to the final differentiation event (20Park M.H. Shin H.I. Choi J.Y. Nam S.H. Kim Y.J. Kim H.J. Ryoo H.M. J. Bone Mineral. Res. 2001; 16: 885-892Crossref PubMed Scopus (73) Google Scholar). Taken together, these observations clearly indicate that Runx2 plays a key role in osteoblast differentiation.In humans, a mutation in FGFR1 that causes its constitutive activation is associated with Pfeiffer syndrome, one of the syndromes that comprise craniosynostosis as a phenotype. In mice, gene replacement with a constitutively active FGFR1 mutant results in increased expression of Runx2 and premature suture closure that is the representative phenotype of human craniosynostosis (21Zhou Y.X., Xu, X. Chen L., Li, C. Brodie S.G. Deng C.X. Hum. Mol. Genet. 2000; 9: 2001-2008Crossref PubMed Scopus (199) Google Scholar). This suggests that Runx2 may be a downstream target gene in FGF/FGFR signaling during bone formation. However, the mechanisms by which activated FGFRs increase Runx2 expression are not yet understood. In this report, we demonstrate for the first time that FGF/FGFR stimulation of Runx2 expression, which leads to the transactivation of downstream genes, is mediated by the PKC pathway. Fibroblast growth factors (FGFs)1 are important autocrine/paracrine signaling molecules involved in intramembranous and endochondral bone formation. They include FGF2, which is a strong mitogen for bone-derived cells (1Globus R.K. Plouet J. Gospodarowicz D. Endocrinology. 1988; 124: 1539-1547Crossref Scopus (266) Google Scholar, 2Long M.W. Robin J.A. Ashcraft E.A. Mann K.G. J. Clin. Invest. 1995; 95: 881-887Crossref PubMed Google Scholar, 3Pitaru S. Kotev-Emeth S. Noff D. Kaffuler S. Savion N. J. Bone Miner. Res. 1993; 8: 919-929Crossref PubMed Scopus (183) Google Scholar, 4Rodan S.B. Wesolowski G. Thomas K.A. Yoon K. Rodan G.A. Conn. Tissue Res. 1989; 20: 283-288Crossref PubMed Scopus (118) Google Scholar, 5Cannalis E. Centrella M. MacCarthy T.L. J. Clin. Invest. 1988; 81: 1572-1577Crossref PubMed Scopus (327) Google Scholar). Disruption of theFGF2 gene results in decreased bone formation (6Montero A. Okada Y. Tomita M. Ito M. Tsurukami H. Nakamura T. Doetschman T. Coffin J.D. Hurley M.M. J. Clin. Invest. 2000; 105: 1085-1093Crossref PubMed Scopus (400) Google Scholar), whereas overexpression of FGF2 in transgenic mice causes achondroplasia, the premature transformation of cartilage to bone (7Coffin J.D. Florkiewicz R.Z. Neumann J. Mort-Hopkins T. Dorn 2nd, G.W. Lightfoot P. German R. Howles P.N. Kier A. O'Toole B.A. Mol. Biol. Cell. 1995; 6: 1861-1873Crossref PubMed Scopus (259) Google Scholar). Constitutive active mutations of FGF receptors (FGFR) 1, 2, and 3 caused a congenital abnormality, craniosynostosis, which is characterized by premature osseous obliteration of cranial suture (8Muenke M. Schell U. Hehr A. Robin N.H. Losken H.W. Schinzed A. Pulleyn L.J. Nat. Genet. 1994; 8: 269-273Crossref PubMed Scopus (537) Google Scholar, 9Reardon W. Winter R.M. Rutland P. Pulleyn L.J. Jones B.M. Malcolm S. Nat. Genet. 1994; 8: 98-103Crossref PubMed Scopus (608) Google Scholar). In osteoblasts, the interaction of FGFs like FGF2 with their FGFRs induces receptor dimerization and autophosphorylation of receptors, which in turn activates multiple signal transduction pathways, including those involving mitogen-activated protein kinases (MAPKs) and protein kinase C (PKC) (10Chaudhary L.R. Avioli L.V. Biochem. Biophys. Res. Commun. 1997; 238: 134-139Crossref PubMed Scopus (70) Google Scholar, 11Kozawa O. Tokuda H. Matsuno H. Uematsu T. J. Cell. Biochem. 1999; 74: 479-485Crossref PubMed Scopus (48) Google Scholar, 12Suzuki A. Palmer G. Bonjour J.P. Caverzasio J. J. Bone Miner. Res. 2000; 15: 95-102Crossref PubMed Scopus (62) Google Scholar, 13Debiais F. Lemonnier J. Hay E. Delannoy P. Caverzasio J. Marie P.J. J. Cell. Biochem. 2001; 81: 68-81Crossref PubMed Scopus (71) Google Scholar). However, the signaling pathways that mediate the biological actions of FGF/FGFR in osteoblasts remain unclear. Runt-related transcription factor 2 (Runx2), previously known asCbfa1/Pebp2αA/AML3, plays an essential role in osteoblast differentiation (14Ducy P. Zhang R. Geoffroy V. Ridall A.L. Karsenty G. Cell. 1997; 89: 747-754Abstract Full Text Full Text PDF PubMed Scopus (3607) Google Scholar, 15Komori T. Yagi H. Nomura S. Yamaguchi A. Sasaki K. Deguchi K. Shimizu Y. Bronson R.T. Gao Y.H. Inada M. Sato M. Okamoto R. Kitamura Y. Yoshiki S. Kishimoto T. Cell. 1997; 89: 755-764Abstract Full Text Full Text PDF PubMed Scopus (3599) Google Scholar, 16Otto F. Thornell A.P. Crompton T. Denzel A. Gilmour K.C. Rosewell I.R. Stamp G.W. Beddington R.S. Mundlos S. Olsen B. Selby P.B. Owen M.J. Cell. 1997; 89: 765-771Abstract Full Text Full Text PDF PubMed Scopus (2378) Google Scholar).Runx2-knockout animals display complete bone loss because of arrested osteoblast maturation (15Komori T. Yagi H. Nomura S. Yamaguchi A. Sasaki K. Deguchi K. Shimizu Y. Bronson R.T. Gao Y.H. Inada M. Sato M. Okamoto R. Kitamura Y. Yoshiki S. Kishimoto T. Cell. 1997; 89: 755-764Abstract Full Text Full Text PDF PubMed Scopus (3599) Google Scholar) while heterozygotes develop cleidocranial dysplasia, which is characterized by delayed ossification (16Otto F. Thornell A.P. Crompton T. Denzel A. Gilmour K.C. Rosewell I.R. Stamp G.W. Beddington R.S. Mundlos S. Olsen B. Selby P.B. Owen M.J. Cell. 1997; 89: 765-771Abstract Full Text Full Text PDF PubMed Scopus (2378) Google Scholar, 17Mundlos S. Otto F. Mundlos C. Mulliken J.B. Aylsworth A.S. Albright S. Lindhout D. Cole W.G. Henn W. Knoll J.H.M. Owen M.J. Mertelsmann R. Zabel B.U. Olsen B.R. Cell. 1997; 89: 773-779Abstract Full Text Full Text PDF PubMed Scopus (1264) Google Scholar). Several reports show that Runx2 regulates the expression of bone marker genes during osteoblast differentiation (14Ducy P. Zhang R. Geoffroy V. Ridall A.L. Karsenty G. Cell. 1997; 89: 747-754Abstract Full Text Full Text PDF PubMed Scopus (3607) Google Scholar, 18Banerjee G. McCabe L.R. Choi J.Y. Hiebert S.W. Stein J.L. Stein G.S. Lian J.B. J. Cell. Biochem. 1997; 66: 1-8Crossref PubMed Scopus (396) Google Scholar, 19Ji C. Casinghino S. Chang D.J. Chen Y. Javed A. Ito Y. Hiebert S.W. Lian J.B. Stein G.S. McCarthy T.L. Centrella M. J. Cell. Biochem. 1998; 69: 353-363Crossref PubMed Scopus (87) Google Scholar). In our previous report, we investigated the expression pattern of Runx2 during intramembranous bone formation and found that Runx2 expression is needed for all steps of osteoblast differentiation, namely, from the commitment to differentiate through to the final differentiation event (20Park M.H. Shin H.I. Choi J.Y. Nam S.H. Kim Y.J. Kim H.J. Ryoo H.M. J. Bone Mineral. Res. 2001; 16: 885-892Crossref PubMed Scopus (73) Google Scholar). Taken together, these observations clearly indicate that Runx2 plays a key role in osteoblast differentiation. In humans, a mutation in FGFR1 that causes its constitutive activation is associated with Pfeiffer syndrome, one of the syndromes that comprise craniosynostosis as a phenotype. In mice, gene replacement with a constitutively active FGFR1 mutant results in increased expression of Runx2 and premature suture closure that is the representative phenotype of human craniosynostosis (21Zhou Y.X., Xu, X. Chen L., Li, C. Brodie S.G. Deng C.X. Hum. Mol. Genet. 2000; 9: 2001-2008Crossref PubMed Scopus (199) Google Scholar). This suggests that Runx2 may be a downstream target gene in FGF/FGFR signaling during bone formation. However, the mechanisms by which activated FGFRs increase Runx2 expression are not yet understood. In this report, we demonstrate for the first time that FGF/FGFR stimulation of Runx2 expression, which leads to the transactivation of downstream genes, is mediated by the PKC pathway. The FGFR mutant found in patients with Crouzon syndrome was generously provided by Dr. Daniel Donoghue, Department of Chemistry and Biochemistry, University of California, San Diego, CA. OC208-CAT and OC208-CAT Runx mut reporter constructs and Runx2-type II expression vector were provided by Drs. Gary S. Stein and Jane B. Lian, Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA. Dominant negative PKCδ expression vector (PKCδ-KR) was generously provided by Dr. Jae-Won Soh, Department of Biochemistry & Molecular Biophysics and Herbert Irving Comprehensive Cancer Center, Columbia University, NY." @default.
- W2089016492 created "2016-06-24" @default.
- W2089016492 creator A5006589634 @default.
- W2089016492 creator A5026989997 @default.
- W2089016492 creator A5032221247 @default.
- W2089016492 creator A5075548073 @default.
- W2089016492 creator A5082376398 @default.
- W2089016492 date "2003-01-01" @default.
- W2089016492 modified "2023-10-12" @default.
- W2089016492 title "The Protein Kinase C Pathway Plays a Central Role in the Fibroblast Growth Factor-stimulated Expression and Transactivation Activity of Runx2" @default.
- W2089016492 cites W1963891523 @default.
- W2089016492 cites W1964250764 @default.
- W2089016492 cites W1966289101 @default.
- W2089016492 cites W1966665452 @default.
- W2089016492 cites W1968859181 @default.
- W2089016492 cites W1975621622 @default.
- W2089016492 cites W1976431224 @default.
- W2089016492 cites W1978293159 @default.
- W2089016492 cites W1980427909 @default.
- W2089016492 cites W1991110432 @default.
- W2089016492 cites W1994596418 @default.
- W2089016492 cites W1997812904 @default.
- W2089016492 cites W2000006956 @default.
- W2089016492 cites W2003617876 @default.
- W2089016492 cites W2007617795 @default.
- W2089016492 cites W2010946184 @default.
- W2089016492 cites W2012191338 @default.
- W2089016492 cites W2013714561 @default.
- W2089016492 cites W2021010911 @default.
- W2089016492 cites W2025046506 @default.
- W2089016492 cites W2029053198 @default.
- W2089016492 cites W2031252651 @default.
- W2089016492 cites W2033255624 @default.
- W2089016492 cites W2034023141 @default.
- W2089016492 cites W2034548013 @default.
- W2089016492 cites W2041750289 @default.
- W2089016492 cites W2043471588 @default.
- W2089016492 cites W2057806830 @default.
- W2089016492 cites W2059494342 @default.
- W2089016492 cites W2059509871 @default.
- W2089016492 cites W2059844384 @default.
- W2089016492 cites W2070793437 @default.
- W2089016492 cites W2072265552 @default.
- W2089016492 cites W2075529268 @default.
- W2089016492 cites W2077045259 @default.
- W2089016492 cites W2083319499 @default.
- W2089016492 cites W2090229104 @default.
- W2089016492 cites W2090316627 @default.
- W2089016492 cites W2096232808 @default.
- W2089016492 cites W2101508825 @default.
- W2089016492 cites W2102230468 @default.
- W2089016492 cites W2109283410 @default.
- W2089016492 cites W2109354605 @default.
- W2089016492 cites W2114345210 @default.
- W2089016492 cites W2118215159 @default.
- W2089016492 cites W2121551386 @default.
- W2089016492 cites W2131598671 @default.
- W2089016492 cites W2140099557 @default.
- W2089016492 cites W2142256883 @default.
- W2089016492 cites W2143518750 @default.
- W2089016492 cites W2158018007 @default.
- W2089016492 cites W2160582900 @default.
- W2089016492 cites W2167091901 @default.
- W2089016492 cites W2168117739 @default.
- W2089016492 cites W2340588251 @default.
- W2089016492 doi "https://doi.org/10.1074/jbc.m203750200" @default.
- W2089016492 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12403780" @default.
- W2089016492 hasPublicationYear "2003" @default.
- W2089016492 type Work @default.
- W2089016492 sameAs 2089016492 @default.
- W2089016492 citedByCount "222" @default.
- W2089016492 countsByYear W20890164922012 @default.
- W2089016492 countsByYear W20890164922013 @default.
- W2089016492 countsByYear W20890164922014 @default.
- W2089016492 countsByYear W20890164922015 @default.
- W2089016492 countsByYear W20890164922016 @default.
- W2089016492 countsByYear W20890164922017 @default.
- W2089016492 countsByYear W20890164922018 @default.
- W2089016492 countsByYear W20890164922019 @default.
- W2089016492 countsByYear W20890164922020 @default.
- W2089016492 countsByYear W20890164922021 @default.
- W2089016492 countsByYear W20890164922022 @default.
- W2089016492 countsByYear W20890164922023 @default.
- W2089016492 crossrefType "journal-article" @default.
- W2089016492 hasAuthorship W2089016492A5006589634 @default.
- W2089016492 hasAuthorship W2089016492A5026989997 @default.
- W2089016492 hasAuthorship W2089016492A5032221247 @default.
- W2089016492 hasAuthorship W2089016492A5075548073 @default.
- W2089016492 hasAuthorship W2089016492A5082376398 @default.
- W2089016492 hasConcept C104317684 @default.
- W2089016492 hasConcept C1292079 @default.
- W2089016492 hasConcept C170493617 @default.
- W2089016492 hasConcept C184235292 @default.
- W2089016492 hasConcept C185592680 @default.
- W2089016492 hasConcept C202751555 @default.
- W2089016492 hasConcept C2776363554 @default.
- W2089016492 hasConcept C2780381497 @default.
- W2089016492 hasConcept C55493867 @default.