Matches in SemOpenAlex for { <https://semopenalex.org/work/W2089093251> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2089093251 abstract "In this paper, a hidden node pruning algorithm based on the neural complexity is proposed, the entropy of neural network can be calculated by the standard covariance matrix of the neural network's connection matrix in the training stage, and the neural complexity can be acquired. In ensuring the information processing capacity of neural network is not reduced, select and delete the least important hidden node, and the simpler neural network architecture is achieved. It is not necessary to train the cost function of the neural network to a local minimal, and the pre-processing neural network weights is avoided before neural network architecture adjustment. The simulation results of the non-linear function approximation shows that the performance of the approximation is ensured and at the same time a simple architecture of neural networks can be achieved." @default.
- W2089093251 created "2016-06-24" @default.
- W2089093251 creator A5028832818 @default.
- W2089093251 creator A5055432844 @default.
- W2089093251 date "2010-08-01" @default.
- W2089093251 modified "2023-10-17" @default.
- W2089093251 title "A node pruning algorithm for feedforward neural network based on neural complexity" @default.
- W2089093251 cites W2065005304 @default.
- W2089093251 cites W2142105298 @default.
- W2089093251 cites W2142544077 @default.
- W2089093251 cites W2145085734 @default.
- W2089093251 cites W2148319325 @default.
- W2089093251 doi "https://doi.org/10.1109/icicip.2010.5564272" @default.
- W2089093251 hasPublicationYear "2010" @default.
- W2089093251 type Work @default.
- W2089093251 sameAs 2089093251 @default.
- W2089093251 citedByCount "24" @default.
- W2089093251 countsByYear W20890932512012 @default.
- W2089093251 countsByYear W20890932512013 @default.
- W2089093251 countsByYear W20890932512014 @default.
- W2089093251 countsByYear W20890932512016 @default.
- W2089093251 countsByYear W20890932512017 @default.
- W2089093251 countsByYear W20890932512019 @default.
- W2089093251 countsByYear W20890932512020 @default.
- W2089093251 countsByYear W20890932512022 @default.
- W2089093251 countsByYear W20890932512023 @default.
- W2089093251 crossrefType "proceedings-article" @default.
- W2089093251 hasAuthorship W2089093251A5028832818 @default.
- W2089093251 hasAuthorship W2089093251A5055432844 @default.
- W2089093251 hasConcept C108010975 @default.
- W2089093251 hasConcept C11413529 @default.
- W2089093251 hasConcept C127413603 @default.
- W2089093251 hasConcept C134342201 @default.
- W2089093251 hasConcept C147168706 @default.
- W2089093251 hasConcept C154945302 @default.
- W2089093251 hasConcept C173079777 @default.
- W2089093251 hasConcept C175202392 @default.
- W2089093251 hasConcept C177973122 @default.
- W2089093251 hasConcept C193415008 @default.
- W2089093251 hasConcept C31258907 @default.
- W2089093251 hasConcept C33766855 @default.
- W2089093251 hasConcept C41008148 @default.
- W2089093251 hasConcept C47702885 @default.
- W2089093251 hasConcept C50644808 @default.
- W2089093251 hasConcept C62611344 @default.
- W2089093251 hasConcept C6557445 @default.
- W2089093251 hasConcept C66938386 @default.
- W2089093251 hasConcept C86582703 @default.
- W2089093251 hasConcept C86803240 @default.
- W2089093251 hasConcept C91873725 @default.
- W2089093251 hasConceptScore W2089093251C108010975 @default.
- W2089093251 hasConceptScore W2089093251C11413529 @default.
- W2089093251 hasConceptScore W2089093251C127413603 @default.
- W2089093251 hasConceptScore W2089093251C134342201 @default.
- W2089093251 hasConceptScore W2089093251C147168706 @default.
- W2089093251 hasConceptScore W2089093251C154945302 @default.
- W2089093251 hasConceptScore W2089093251C173079777 @default.
- W2089093251 hasConceptScore W2089093251C175202392 @default.
- W2089093251 hasConceptScore W2089093251C177973122 @default.
- W2089093251 hasConceptScore W2089093251C193415008 @default.
- W2089093251 hasConceptScore W2089093251C31258907 @default.
- W2089093251 hasConceptScore W2089093251C33766855 @default.
- W2089093251 hasConceptScore W2089093251C41008148 @default.
- W2089093251 hasConceptScore W2089093251C47702885 @default.
- W2089093251 hasConceptScore W2089093251C50644808 @default.
- W2089093251 hasConceptScore W2089093251C62611344 @default.
- W2089093251 hasConceptScore W2089093251C6557445 @default.
- W2089093251 hasConceptScore W2089093251C66938386 @default.
- W2089093251 hasConceptScore W2089093251C86582703 @default.
- W2089093251 hasConceptScore W2089093251C86803240 @default.
- W2089093251 hasConceptScore W2089093251C91873725 @default.
- W2089093251 hasLocation W20890932511 @default.
- W2089093251 hasOpenAccess W2089093251 @default.
- W2089093251 hasPrimaryLocation W20890932511 @default.
- W2089093251 hasRelatedWork W1584270863 @default.
- W2089093251 hasRelatedWork W1595652908 @default.
- W2089093251 hasRelatedWork W2089093251 @default.
- W2089093251 hasRelatedWork W2150506001 @default.
- W2089093251 hasRelatedWork W2378845890 @default.
- W2089093251 hasRelatedWork W28348178 @default.
- W2089093251 hasRelatedWork W2950022897 @default.
- W2089093251 hasRelatedWork W3177279640 @default.
- W2089093251 hasRelatedWork W3279225 @default.
- W2089093251 hasRelatedWork W2440925417 @default.
- W2089093251 isParatext "false" @default.
- W2089093251 isRetracted "false" @default.
- W2089093251 magId "2089093251" @default.
- W2089093251 workType "article" @default.