Matches in SemOpenAlex for { <https://semopenalex.org/work/W2089305706> ?p ?o ?g. }
- W2089305706 endingPage "297" @default.
- W2089305706 startingPage "285" @default.
- W2089305706 abstract "Grain yield maps must accurately display general yield patterns as well as details of local yield variation. Different geostatistical procedures for creating interpolated yield maps by integrating yield data with remotely sensed vegetation indices (VI) were evaluated. Yield monitor data and a multispectral satellite image at 4‐m spatial resolution were collected in an irrigated maize ( Zea mays L.) field and a rainfed soybean [ Glycine max (L.) Merr.] field. Ordinary kriging (OK), cokriging (CK), simple kriging with varying local means (SKLM), and kriging with external drift (KED) were compared using grain yield as primary variable and three different VI as secondary variables. At both sites, SKLM performed best in terms of the precision of grain yield maps and maps that depicted true yield patterns. Utilizing the most suitable vegetation index at each site and SKLM as interpolation method, the root mean squared error of yield predictions was increased by nearly 20% over OK. Methods such as KED or CK resulted in only small improvement of yield maps over those obtained with OK. Utilizing the satellite image decreased errors associated with yield monitor operations and allowed better prediction in areas where no reliable yield measurements were available. Due to the robust nature of modeling the relationship between primary and one or more secondary variables, the SKLM method has considerable potential for use in commercial precision‐farming software. Future efforts on improving yield mapping should concentrate on obtaining improved yield monitor data and imagery and developing yield‐sensitive VI for high‐yielding crops." @default.
- W2089305706 created "2016-06-24" @default.
- W2089305706 creator A5023405262 @default.
- W2089305706 creator A5073696403 @default.
- W2089305706 date "2004-01-01" @default.
- W2089305706 modified "2023-10-02" @default.
- W2089305706 title "Geostatistical Integration of Yield Monitor Data and Remote Sensing Improves Yield Maps" @default.
- W2089305706 cites W113448356 @default.
- W2089305706 cites W1487005091 @default.
- W2089305706 cites W1571001096 @default.
- W2089305706 cites W1765455324 @default.
- W2089305706 cites W1982119604 @default.
- W2089305706 cites W1992403396 @default.
- W2089305706 cites W1995819826 @default.
- W2089305706 cites W2000613913 @default.
- W2089305706 cites W2022113163 @default.
- W2089305706 cites W2030370010 @default.
- W2089305706 cites W2036082351 @default.
- W2089305706 cites W2036793929 @default.
- W2089305706 cites W2046155621 @default.
- W2089305706 cites W2053206034 @default.
- W2089305706 cites W2063623478 @default.
- W2089305706 cites W2064246827 @default.
- W2089305706 cites W2065429410 @default.
- W2089305706 cites W2065892727 @default.
- W2089305706 cites W2075844317 @default.
- W2089305706 cites W2077549175 @default.
- W2089305706 cites W2134681794 @default.
- W2089305706 cites W2143494625 @default.
- W2089305706 cites W2144051257 @default.
- W2089305706 cites W2149813070 @default.
- W2089305706 cites W2166516660 @default.
- W2089305706 cites W2320724374 @default.
- W2089305706 cites W2332764233 @default.
- W2089305706 cites W2346143708 @default.
- W2089305706 cites W2498490114 @default.
- W2089305706 cites W2499173834 @default.
- W2089305706 cites W44046574 @default.
- W2089305706 cites W63742813 @default.
- W2089305706 doi "https://doi.org/10.2134/agronj2004.2850" @default.
- W2089305706 hasPublicationYear "2004" @default.
- W2089305706 type Work @default.
- W2089305706 sameAs 2089305706 @default.
- W2089305706 citedByCount "33" @default.
- W2089305706 countsByYear W20893057062012 @default.
- W2089305706 countsByYear W20893057062013 @default.
- W2089305706 countsByYear W20893057062014 @default.
- W2089305706 countsByYear W20893057062015 @default.
- W2089305706 countsByYear W20893057062016 @default.
- W2089305706 countsByYear W20893057062019 @default.
- W2089305706 countsByYear W20893057062020 @default.
- W2089305706 countsByYear W20893057062021 @default.
- W2089305706 countsByYear W20893057062022 @default.
- W2089305706 countsByYear W20893057062023 @default.
- W2089305706 crossrefType "journal-article" @default.
- W2089305706 hasAuthorship W2089305706A5023405262 @default.
- W2089305706 hasAuthorship W2089305706A5073696403 @default.
- W2089305706 hasConcept C105795698 @default.
- W2089305706 hasConcept C115961682 @default.
- W2089305706 hasConcept C118518473 @default.
- W2089305706 hasConcept C120217122 @default.
- W2089305706 hasConcept C127413603 @default.
- W2089305706 hasConcept C134121241 @default.
- W2089305706 hasConcept C137800194 @default.
- W2089305706 hasConcept C142724271 @default.
- W2089305706 hasConcept C146978453 @default.
- W2089305706 hasConcept C154945302 @default.
- W2089305706 hasConcept C159390177 @default.
- W2089305706 hasConcept C166957645 @default.
- W2089305706 hasConcept C173163844 @default.
- W2089305706 hasConcept C191897082 @default.
- W2089305706 hasConcept C192562407 @default.
- W2089305706 hasConcept C19269812 @default.
- W2089305706 hasConcept C205649164 @default.
- W2089305706 hasConcept C2776133958 @default.
- W2089305706 hasConcept C2992211155 @default.
- W2089305706 hasConcept C33923547 @default.
- W2089305706 hasConcept C39432304 @default.
- W2089305706 hasConcept C41008148 @default.
- W2089305706 hasConcept C62649853 @default.
- W2089305706 hasConcept C6557445 @default.
- W2089305706 hasConcept C71924100 @default.
- W2089305706 hasConcept C81692654 @default.
- W2089305706 hasConcept C86803240 @default.
- W2089305706 hasConcept C94747663 @default.
- W2089305706 hasConceptScore W2089305706C105795698 @default.
- W2089305706 hasConceptScore W2089305706C115961682 @default.
- W2089305706 hasConceptScore W2089305706C118518473 @default.
- W2089305706 hasConceptScore W2089305706C120217122 @default.
- W2089305706 hasConceptScore W2089305706C127413603 @default.
- W2089305706 hasConceptScore W2089305706C134121241 @default.
- W2089305706 hasConceptScore W2089305706C137800194 @default.
- W2089305706 hasConceptScore W2089305706C142724271 @default.
- W2089305706 hasConceptScore W2089305706C146978453 @default.
- W2089305706 hasConceptScore W2089305706C154945302 @default.
- W2089305706 hasConceptScore W2089305706C159390177 @default.
- W2089305706 hasConceptScore W2089305706C166957645 @default.
- W2089305706 hasConceptScore W2089305706C173163844 @default.