Matches in SemOpenAlex for { <https://semopenalex.org/work/W208946482> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W208946482 startingPage "72" @default.
- W208946482 abstract "Our approach is based on (a) building representations of prototypical scenarios, e.g., launching a satellite, in a large knowledge-base, (b) extracting fragments of information from the text of interest using NLP techniques, e.g., subject-verb-object relations, and then (c) identifying which of the scenario(s) best match the processed input text. The system thus has strong expectations about what sort of things might happen in the world, and we seek to exploit those expectations for interpreting text, including resolving the many types of ambiguity which can arise. After matching, the background representations provide a source of additional facts about the situation described in the text, including the large number of facts assumed but not explicitly mentioned. This additional knowledge can be used for supporting inference, question-answering, and advanced search of a text corpus. For example, a query for rocket launch events would identify (1) as relevant, even though rockets are not explicitly mentioned in that text. The representations themselves are constructed by identifying the key “participants” (both objects and events) in the scenario, and then creating a graph of relationships that normally exist between those participants. These graphical representations are compositional [2] in two important ways: First, through inheritance, a representation can be combined with representations of its generalizations (e.g., representations of “launching a satellite” and “placing something in position” can be combined). Second, different viewpoints/aspects of a concept such as launching a satellite are encoded as separate representational structures (e.g., the sequence of events; the temporal information; the spatial information; goal-oriented information). During text interpretation, only those representation(s) of aspects/views which the text itself refers to will be composed into the structure matched with the text. To match the representations with the NLP-processed text fragments, the system searches for matches between objects in the representations and objects mentioned in the text; and relationships in the representations and relationships mentioned in the text. Much of the ambiguity in the source text, e.g., the mapping from syntactic to semantic roles, is resolved at this point (rather than earlier), as the knowledge base structures define allowable/prototypical ways in which various concepts and relationships can be combined. We are also exploring ways to efficiently build the KB of scenarios in the first place, given that there are probably thousands of scenarios required for a typical application, and are looking at semi-automated ways of doing this. We are currently exploring three avenues: use of NLPprocessed glossary definitions as a starting point; seeding of the knowledge-base using a Schubert-style generateand-filter approach [3] (namely, produce simple, textderived generalizations for a human to review, e.g., from “China launched a satellite Wednesday” the generalization “countries launch satellites” can be automatically derived); and manual encoding. This overall approach treats text interpretation, and subsequent question-answering about that text, fundamentally as a modeling activity, in which text suggests scenario models to use, and those models suggest ways of interpreting text. Although this approach is challenging for a number reasons, it offers significant potential for allowing question-answering to go beyond facts explicitly stated in the various text sources used." @default.
- W208946482 created "2016-06-24" @default.
- W208946482 creator A5067238310 @default.
- W208946482 creator A5067322891 @default.
- W208946482 creator A5075558342 @default.
- W208946482 creator A5079997549 @default.
- W208946482 creator A5081635691 @default.
- W208946482 date "2003-01-01" @default.
- W208946482 modified "2023-09-24" @default.
- W208946482 title "Knowledge-Driven Text Interpretation and Question-Answering: Some Current Activities at Boeing Math and Computing Technology" @default.
- W208946482 cites W1622725619 @default.
- W208946482 cites W2114975944 @default.
- W208946482 cites W2130947465 @default.
- W208946482 hasPublicationYear "2003" @default.
- W208946482 type Work @default.
- W208946482 sameAs 208946482 @default.
- W208946482 citedByCount "0" @default.
- W208946482 crossrefType "journal-article" @default.
- W208946482 hasAuthorship W208946482A5067238310 @default.
- W208946482 hasAuthorship W208946482A5067322891 @default.
- W208946482 hasAuthorship W208946482A5075558342 @default.
- W208946482 hasAuthorship W208946482A5079997549 @default.
- W208946482 hasAuthorship W208946482A5081635691 @default.
- W208946482 hasConcept C136764020 @default.
- W208946482 hasConcept C142362112 @default.
- W208946482 hasConcept C153349607 @default.
- W208946482 hasConcept C154945302 @default.
- W208946482 hasConcept C165696696 @default.
- W208946482 hasConcept C17744445 @default.
- W208946482 hasConcept C199360897 @default.
- W208946482 hasConcept C199539241 @default.
- W208946482 hasConcept C204321447 @default.
- W208946482 hasConcept C23123220 @default.
- W208946482 hasConcept C2776035091 @default.
- W208946482 hasConcept C2776214188 @default.
- W208946482 hasConcept C2776359362 @default.
- W208946482 hasConcept C2777855551 @default.
- W208946482 hasConcept C2780522230 @default.
- W208946482 hasConcept C2781238097 @default.
- W208946482 hasConcept C38652104 @default.
- W208946482 hasConcept C41008148 @default.
- W208946482 hasConcept C44291984 @default.
- W208946482 hasConcept C4554734 @default.
- W208946482 hasConcept C527412718 @default.
- W208946482 hasConcept C88548561 @default.
- W208946482 hasConcept C94625758 @default.
- W208946482 hasConceptScore W208946482C136764020 @default.
- W208946482 hasConceptScore W208946482C142362112 @default.
- W208946482 hasConceptScore W208946482C153349607 @default.
- W208946482 hasConceptScore W208946482C154945302 @default.
- W208946482 hasConceptScore W208946482C165696696 @default.
- W208946482 hasConceptScore W208946482C17744445 @default.
- W208946482 hasConceptScore W208946482C199360897 @default.
- W208946482 hasConceptScore W208946482C199539241 @default.
- W208946482 hasConceptScore W208946482C204321447 @default.
- W208946482 hasConceptScore W208946482C23123220 @default.
- W208946482 hasConceptScore W208946482C2776035091 @default.
- W208946482 hasConceptScore W208946482C2776214188 @default.
- W208946482 hasConceptScore W208946482C2776359362 @default.
- W208946482 hasConceptScore W208946482C2777855551 @default.
- W208946482 hasConceptScore W208946482C2780522230 @default.
- W208946482 hasConceptScore W208946482C2781238097 @default.
- W208946482 hasConceptScore W208946482C38652104 @default.
- W208946482 hasConceptScore W208946482C41008148 @default.
- W208946482 hasConceptScore W208946482C44291984 @default.
- W208946482 hasConceptScore W208946482C4554734 @default.
- W208946482 hasConceptScore W208946482C527412718 @default.
- W208946482 hasConceptScore W208946482C88548561 @default.
- W208946482 hasConceptScore W208946482C94625758 @default.
- W208946482 hasLocation W2089464821 @default.
- W208946482 hasOpenAccess W208946482 @default.
- W208946482 hasPrimaryLocation W2089464821 @default.
- W208946482 hasRelatedWork W1886172393 @default.
- W208946482 hasRelatedWork W1993755899 @default.
- W208946482 hasRelatedWork W2029102136 @default.
- W208946482 hasRelatedWork W2131347559 @default.
- W208946482 hasRelatedWork W2169256497 @default.
- W208946482 hasRelatedWork W2188012532 @default.
- W208946482 hasRelatedWork W2250261831 @default.
- W208946482 hasRelatedWork W2252077675 @default.
- W208946482 hasRelatedWork W2253068693 @default.
- W208946482 hasRelatedWork W2402324212 @default.
- W208946482 hasRelatedWork W2912709362 @default.
- W208946482 hasRelatedWork W2930050459 @default.
- W208946482 hasRelatedWork W2977857619 @default.
- W208946482 hasRelatedWork W2996848635 @default.
- W208946482 hasRelatedWork W3003801037 @default.
- W208946482 hasRelatedWork W3088066054 @default.
- W208946482 hasRelatedWork W3185969321 @default.
- W208946482 hasRelatedWork W3193573834 @default.
- W208946482 hasRelatedWork W833228676 @default.
- W208946482 hasRelatedWork W3088330127 @default.
- W208946482 isParatext "false" @default.
- W208946482 isRetracted "false" @default.
- W208946482 magId "208946482" @default.
- W208946482 workType "article" @default.